Roots and Powers in Regular Languages: Recognizing Nonregular Properties by Finite Automata

2020 ◽  
Vol 175 (1-4) ◽  
pp. 173-185
Author(s):  
Fabian Frei ◽  
Juraj Hromkovič ◽  
Juhani Karhumäki

It is well known that the set of powers of any given order, for example squares, in a regular language need not be regular. Nevertheless, finite automata can identify them via their roots. More precisely, we recall that, given a regular language L, the set of square roots of L is regular. The same holds true for the nth roots for any n and for the set of all nontrivial roots; we give a concrete construction for all of them. Using the above result, we obtain decision algorithms for many natural problems on powers. For example, it is decidable, given two regular languages, whether they contain the same number of squares at each length. Finally, we give an exponential lower bound on the size of automata identifying powers in regular languages. Moreover, we highlight interesting behavior differences between taking fractional powers of regular languages and taking prefixes of a fractional length. Indeed, fractional roots in a regular language can typically not be identified by finite automata.

Author(s):  
Fabian Frei ◽  
Juraj Hromkovič ◽  
Juhani Karhumäki

It is well known that the set of powers of any given order, for example squares, in a regular language need not be regular. Nevertheless, finite automata can identify them via their roots. More precisely, we recall that, given a regular language L, the set of square roots of L is regular. The same holds true for the nth roots for any n and for the set of all nontrivial roots; we give a concrete construction for all of them. Using the above result, we obtain decision algorithms for many natural problems on powers. For example, it is decidable, given two regular languages, whether they contain the same number of squares at each length. Finally, we give an exponential lower bound on the size of automata identifying powers in regular languages. Moreover, we highlight interesting behavior differences between taking fractional powers of regular languages and taking prefixes of a fractional length. Indeed, fractional roots in a regular language can typically not be identified by finite automata.


2010 ◽  
Vol 21 (05) ◽  
pp. 843-858 ◽  
Author(s):  
ANDREAS MALCHER ◽  
CARLO MEREGHETTI ◽  
BEATRICE PALANO

Iterative arrays (IAs) are a parallel computational model with a sequential processing of the input. They are one-dimensional arrays of interacting identical deterministic finite automata. In this paper, realtime-IAs with sublinear space bounds are used to recognize formal languages. The existence of an infinite proper hierarchy of space complexity classes between logarithmic and linear space bounds is proved. Some decidability questions on logarithmically space bounded realtime-IAs are investigated, and an optimal logarithmic space lower bound for non-regular language recognition on realtime-IAs is shown. Finally, some non-recursive trade-offs between space bounded realtime-IAs are emphasized.


2012 ◽  
Vol 23 (01) ◽  
pp. 87-98
Author(s):  
ZOLTÁN ÉSIK

It is known that an ordinal is the order type of the lexicographic ordering of a regular language if and only if it is less than ωω. We design a polynomial time algorithm that constructs, for each well-ordered regular language L with respect to the lexicographic ordering, given by a deterministic finite automaton, the Cantor Normal Form of its order type. It follows that there is a polynomial time algorithm to decide whether two deterministic finite automata accepting well-ordered regular languages accept isomorphic languages. We also give estimates on the state complexity of the smallest "ordinal automaton" representing an ordinal less than ωω, together with an algorithm that translates each such ordinal to an automaton.


2016 ◽  
Vol 27 (07) ◽  
pp. 863-878 ◽  
Author(s):  
Yo-Sub Han ◽  
Sang-Ki Ko ◽  
Timothy Ng ◽  
Kai Salomaa

It is well known that the resulting language obtained by inserting a regular language to a regular language is regular. We study the nondeterministic and deterministic state complexity of the insertion operation. Given two incomplete DFAs of sizes m and n, we give an upper bound (m+2)·2mn−m−1·3m and find a lower bound for an asymp-totically tight bound. We also present the tight nondeterministic state complexity by a fooling set technique. The deterministic state complexity of insertion is 2Θ(mn) and the nondeterministic state complexity of insertion is precisely mn+2m, where m and n are the size of input finite automata. We also consider the state complexity of insertion in the case where the inserted language is bifix-free or non-returning.


2012 ◽  
Vol 23 (06) ◽  
pp. 1261-1276 ◽  
Author(s):  
JANUSZ BRZOZOWSKI ◽  
BO LIU

The quotient complexity, also known as state complexity, of a regular language is the number of distinct left quotients of the language. The quotient complexity of an operation is the maximal quotient complexity of the language resulting from the operation, as a function of the quotient complexities of the operands. The class of star-free languages is the smallest class containing the finite languages and closed under boolean operations and concatenation. We prove that the tight bounds on the quotient complexities of union, intersection, difference, symmetric difference, concatenation and star for star-free languages are the same as those for regular languages, with some small exceptions, whereas 2n-1 is a lower bound for reversal.


2013 ◽  
Vol 24 (07) ◽  
pp. 1009-1027 ◽  
Author(s):  
JANUSZ BRZOZOWSKI ◽  
HELLIS TAMM

The quotient complexity of a regular language L, which is the same as its state complexity, is the number of left quotients of L. An atom of a non-empty regular language L with n quotients is a non-empty intersection of the n quotients, which can be uncomplemented or complemented. An NFA is atomic if the right language of every state is a union of atoms. We characterize all reduced atomic NFAs of a given language, i.e., those NFAs that have no equivalent states. We prove that, for any language L with quotient complexity n, the quotient complexity of any atom of L with r complemented quotients has an upper bound of 2n − 1 if r = 0 or r = n; for 1 ≤ r ≤ n − 1 the bound is[Formula: see text] For each n ≥ 2, we exhibit a language with 2n atoms which meet these bounds.


2015 ◽  
Vol 26 (02) ◽  
pp. 211-227 ◽  
Author(s):  
Hae-Sung Eom ◽  
Yo-Sub Han ◽  
Kai Salomaa

We investigate the state complexity of multiple unions and of multiple intersections for prefix-free regular languages. Prefix-free deterministic finite automata have their own unique structural properties that are crucial for obtaining state complexity upper bounds that are improved from those for general regular languages. We present a tight lower bound construction for k-union using an alphabet of size k + 1 and for k-intersection using a binary alphabet. We prove that the state complexity upper bound for k-union cannot be reached by languages over an alphabet with less than k symbols. We also give a lower bound construction for k-union using a binary alphabet that is within a constant factor of the upper bound.


2012 ◽  
Vol 23 (05) ◽  
pp. 1117-1129 ◽  
Author(s):  
SHENGGEN ZHENG ◽  
DAOWEN QIU ◽  
LVZHOU LI

Two-way finite automata with quantum and classical states (2QCFA) were introduced by Ambainis and Watrous, and it was shown that 2QCFA have superiority over two-way probabilistic finite automata (2PFA) for recognizing some non-regular languages such as the language Leq = {anbn ∣ n ∈ N} and the palindrome language Lpal = {w ∈ {a,b}* ∣ w=wR}, where xR is x in the reverse order. It is interesting to find more languages like these that witness the superiority of 2QCFA over 2PFA. In this paper, we consider the language Lm = {xcy ∣ ∑ = {a,b,c},x,y ∈ {a,b}*, ∣x∣ = ∣y∣} that is similar to the middle language Lmiddle = {xay ∣ x,y ∈ {a,b}*, ∣x∣ = ∣y∣}. We prove that the language Lm show that Lm can be recognized by 2PFA with bounded error, but only in exponential expected time. Thus Lm is another witness of the fact that 2QCFA are more powerful than their classical counterparts.


2005 ◽  
Vol 16 (05) ◽  
pp. 883-896 ◽  
Author(s):  
MICHAEL DOMARATZKI ◽  
KEITH ELLUL ◽  
JEFFREY SHALLIT ◽  
MING-WEI WANG

In this paper we study some properties of cyclic unary regular languages. We find a connection between the uniqueness of the minimal NFA for certain cyclic unary regular languages and a Diophantine equation studied by Sylvester. We also obtain some results on the radius of unary languages. We show that the nondeterministic radius of a cyclic unary regular language L is not necessarily obtained by any of the minimal NFAs for L. We give a class of examples which demonstrates that the nondeterministic radius of a regular language cannot necessarily even be approximated by the minimal radius of its minimal NFAs.


Author(s):  
Benedek Nagy

Union-free expressions are regular expressions without using the union operation. Consequently, (nondeterministic) union-free languages are described by regular expressions using only concatenation and Kleene star. The language class is also characterised by a special class of finite automata: 1CFPAs have exactly one cycle-free accepting path from each of their states. Obviously such an automaton has exactly one accepting state. The deterministic counterpart of such class of automata defines the deterministic union-free (d-union-free, for short) languages. In this paper [Formula: see text]-free nondeterministic variants of 1CFPAs are used to define n-union-free languages. The defined language class is shown to be properly between the classes of (nondeterministic) union-free and d-union-free languages (in case of at least binary alphabet). In case of unary alphabet the class of n-union-free languages coincides with the class of union-free languages. Some properties of the new subregular class of languages are discussed, e.g., closure properties. On the other hand, a regular expression is in union normal form if it is a finite union of union-free expressions. It is well known that every regular expression can be written in union normal form, i.e., all regular languages can be described as finite unions of (nondeterministic) union-free languages. It is also known that the same fact does not hold for deterministic union-free languages, that is, there are regular languages that cannot be written as finite unions of d-union-free languages. As an important result here we show that every regular language can be defined by a finite union of n-union-free languages. This fact also allows to define n-union-complexity of regular languages.


Sign in / Sign up

Export Citation Format

Share Document