scholarly journals SUBLINEARLY SPACE BOUNDED ITERATIVE ARRAYS

2010 ◽  
Vol 21 (05) ◽  
pp. 843-858 ◽  
Author(s):  
ANDREAS MALCHER ◽  
CARLO MEREGHETTI ◽  
BEATRICE PALANO

Iterative arrays (IAs) are a parallel computational model with a sequential processing of the input. They are one-dimensional arrays of interacting identical deterministic finite automata. In this paper, realtime-IAs with sublinear space bounds are used to recognize formal languages. The existence of an infinite proper hierarchy of space complexity classes between logarithmic and linear space bounds is proved. Some decidability questions on logarithmically space bounded realtime-IAs are investigated, and an optimal logarithmic space lower bound for non-regular language recognition on realtime-IAs is shown. Finally, some non-recursive trade-offs between space bounded realtime-IAs are emphasized.

2019 ◽  
Vol 30 (01) ◽  
pp. 115-134 ◽  
Author(s):  
Michal Hospodár ◽  
Galina Jirásková ◽  
Peter Mlynárčik

We examine the descriptional complexity of the forever operator, which assigns the language [Formula: see text] to a regular language [Formula: see text], and we investigate the trade-offs between various models of finite automata. We consider complete and partial deterministic finite automata, nondeterministic finite automata with single or multiple initial states, alternating, and Boolean finite automata. We assume that the argument and the result of this operation are accepted by automata belonging to one of these six models. We investigate all possible trade-offs and provide a tight upper bound for 32 of 36 of them. The most interesting result is the trade-off from nondeterministic to deterministic automata given by the Dedekind number [Formula: see text]. We also prove that the nondeterministic state complexity of [Formula: see text] is [Formula: see text] which solves an open problem stated by Birget [The state complexity of [Formula: see text] and its connection with temporal logic, Inform. Process. Lett. 58 (1996) 185–188].


2007 ◽  
Vol 18 (06) ◽  
pp. 1407-1416 ◽  
Author(s):  
KAI SALOMAA ◽  
PAUL SCHOFIELD

It is known that the neighborhood of a regular language with respect to an additive distance is regular. We introduce an additive weighted finite automaton model that provides a conceptually simple way to reprove this result. We consider the state complexity of converting additive weighted finite automata to deterministic finite automata. As our main result we establish a tight upper bound for the state complexity of the conversion.


2016 ◽  
Vol 27 (07) ◽  
pp. 863-878 ◽  
Author(s):  
Yo-Sub Han ◽  
Sang-Ki Ko ◽  
Timothy Ng ◽  
Kai Salomaa

It is well known that the resulting language obtained by inserting a regular language to a regular language is regular. We study the nondeterministic and deterministic state complexity of the insertion operation. Given two incomplete DFAs of sizes m and n, we give an upper bound (m+2)·2mn−m−1·3m and find a lower bound for an asymp-totically tight bound. We also present the tight nondeterministic state complexity by a fooling set technique. The deterministic state complexity of insertion is 2Θ(mn) and the nondeterministic state complexity of insertion is precisely mn+2m, where m and n are the size of input finite automata. We also consider the state complexity of insertion in the case where the inserted language is bifix-free or non-returning.


2010 ◽  
Vol 10 (9&10) ◽  
pp. 747-770
Author(s):  
Abuzer Yakaryilmaz ◽  
A.C. Cem Say

The nondeterministic quantum finite automaton (NQFA) is the only known case where a one-way quantum finite automaton (QFA) model has been shown to be strictly superior in terms of language recognition power to its probabilistic counterpart. We give a characterization of the class of languages recognized by NQFAs, demonstrating that it is equal to the class of exclusive stochastic languages. We also characterize the class of languages that are recognized necessarily by two-sided error by QFAs. It is shown that these classes remain the same when the QFAs used in their definitions are replaced by several different model variants that have appeared in the literature. We prove several closure properties of the related classes. The ramifications of these results about classical and quantum sublogarithmic space complexity classes are examined.


2020 ◽  
Vol 175 (1-4) ◽  
pp. 173-185
Author(s):  
Fabian Frei ◽  
Juraj Hromkovič ◽  
Juhani Karhumäki

It is well known that the set of powers of any given order, for example squares, in a regular language need not be regular. Nevertheless, finite automata can identify them via their roots. More precisely, we recall that, given a regular language L, the set of square roots of L is regular. The same holds true for the nth roots for any n and for the set of all nontrivial roots; we give a concrete construction for all of them. Using the above result, we obtain decision algorithms for many natural problems on powers. For example, it is decidable, given two regular languages, whether they contain the same number of squares at each length. Finally, we give an exponential lower bound on the size of automata identifying powers in regular languages. Moreover, we highlight interesting behavior differences between taking fractional powers of regular languages and taking prefixes of a fractional length. Indeed, fractional roots in a regular language can typically not be identified by finite automata.


2017 ◽  
Vol 28 (05) ◽  
pp. 503-522
Author(s):  
Holger Bock Axelsen ◽  
Markus Holzer ◽  
Martin Kutrib

Recently, a method to decide the NL-complete problem of whether the language accepted by a given deterministic finite automaton (DFA) can also be accepted by some reversible deterministic finite automaton (REV-DFA) has been derived. Here, we show that the corresponding problem for nondeterministic finite automata (NFA) is PSPACE-complete. The recent DFA method essentially works by minimizing the DFA and inspecting it for a forbidden pattern. We here study the degree of irreversibility for a regular language, the minimal number of such forbidden patterns necessary in any DFA accepting the language, and show that the degree induces a strict infinite hierarchy of language families. We examine how the degree of irreversibility behaves under the usual language operations union, intersection, complement, concatenation, and Kleene star, showing tight bounds (some asymptotically) on the degree.


2015 ◽  
Vol 26 (02) ◽  
pp. 211-227 ◽  
Author(s):  
Hae-Sung Eom ◽  
Yo-Sub Han ◽  
Kai Salomaa

We investigate the state complexity of multiple unions and of multiple intersections for prefix-free regular languages. Prefix-free deterministic finite automata have their own unique structural properties that are crucial for obtaining state complexity upper bounds that are improved from those for general regular languages. We present a tight lower bound construction for k-union using an alphabet of size k + 1 and for k-intersection using a binary alphabet. We prove that the state complexity upper bound for k-union cannot be reached by languages over an alphabet with less than k symbols. We also give a lower bound construction for k-union using a binary alphabet that is within a constant factor of the upper bound.


Author(s):  
Fabian Frei ◽  
Juraj Hromkovič ◽  
Juhani Karhumäki

It is well known that the set of powers of any given order, for example squares, in a regular language need not be regular. Nevertheless, finite automata can identify them via their roots. More precisely, we recall that, given a regular language L, the set of square roots of L is regular. The same holds true for the nth roots for any n and for the set of all nontrivial roots; we give a concrete construction for all of them. Using the above result, we obtain decision algorithms for many natural problems on powers. For example, it is decidable, given two regular languages, whether they contain the same number of squares at each length. Finally, we give an exponential lower bound on the size of automata identifying powers in regular languages. Moreover, we highlight interesting behavior differences between taking fractional powers of regular languages and taking prefixes of a fractional length. Indeed, fractional roots in a regular language can typically not be identified by finite automata.


Author(s):  
Lila Kari ◽  
Timothy Ng

Splicing systems are generative mechanisms introduced by Tom Head in 1987 to model the biological process of DNA recombination. The computational engine of a splicing system is the “splicing operation”, a cut-and-paste binary string operation defined by a set of “splicing rules”, quadruples [Formula: see text] where [Formula: see text] are words over an alphabet [Formula: see text]. For two strings [Formula: see text] and [Formula: see text], applying the splicing rule [Formula: see text] produces the string [Formula: see text]. In this paper we focus on a particular type of splicing systems, called [Formula: see text] semi-simple splicing systems, [Formula: see text] and [Formula: see text], wherein all splicing rules [Formula: see text] have the property that the two strings in positions [Formula: see text] and [Formula: see text] in [Formula: see text] are singleton letters, while the other two strings are empty. The language generated by such a system consists of the set of words that are obtained starting from an initial set called “axiom set”, by iteratively applying the splicing rules to strings in the axiom set as well as to intermediately produced strings. We consider semi-simple splicing systems where the axiom set is a regular language, and investigate the descriptional complexity of such systems in terms of the size of the minimal deterministic finite automata that recognize the languages they generate.


1992 ◽  
Vol 02 (01) ◽  
pp. 39-55
Author(s):  
DUNG T. HUYNH

In this paper, we study the complexity of deciding code and monoid properties for regular sets specified by deterministic or nondeterministic finite automata. The results are as follows. The code problem for regular sets specified by deterministic or nondeterministic finite automata is NL-complete under NC(1) reducibilities. The problems of determining whether a regular set given by a deterministic finite automaton is a monoid or a free monoid or a finitely generated monoid are all NL-complete under NC(1) reducibilities. These monoid problems become PSPACE-complete if the regular sets are specified by nondeterministic finite automata instead. The maximal code problem for deterministic finite automata is shown to be in DET and NL-hard, while a PSPACE upper bound and NP-hardness lower bound hold for the case of nondeterministic finite automata.


Sign in / Sign up

Export Citation Format

Share Document