An intrusion detection method based on active transfer learning

2020 ◽  
Vol 24 (2) ◽  
pp. 363-383 ◽  
Author(s):  
Jingmei Li ◽  
Weifei Wu ◽  
Di Xue
2021 ◽  
Vol 1966 (1) ◽  
pp. 012051
Author(s):  
Shuai Zou ◽  
Fangwei Zhong ◽  
Bing Han ◽  
Hao Sun ◽  
Tao Qian ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4736
Author(s):  
Sk. Tanzir Mehedi ◽  
Adnan Anwar ◽  
Ziaur Rahman ◽  
Kawsar Ahmed

The Controller Area Network (CAN) bus works as an important protocol in the real-time In-Vehicle Network (IVN) systems for its simple, suitable, and robust architecture. The risk of IVN devices has still been insecure and vulnerable due to the complex data-intensive architectures which greatly increase the accessibility to unauthorized networks and the possibility of various types of cyberattacks. Therefore, the detection of cyberattacks in IVN devices has become a growing interest. With the rapid development of IVNs and evolving threat types, the traditional machine learning-based IDS has to update to cope with the security requirements of the current environment. Nowadays, the progression of deep learning, deep transfer learning, and its impactful outcome in several areas has guided as an effective solution for network intrusion detection. This manuscript proposes a deep transfer learning-based IDS model for IVN along with improved performance in comparison to several other existing models. The unique contributions include effective attribute selection which is best suited to identify malicious CAN messages and accurately detect the normal and abnormal activities, designing a deep transfer learning-based LeNet model, and evaluating considering real-world data. To this end, an extensive experimental performance evaluation has been conducted. The architecture along with empirical analyses shows that the proposed IDS greatly improves the detection accuracy over the mainstream machine learning, deep learning, and benchmark deep transfer learning models and has demonstrated better performance for real-time IVN security.


2021 ◽  
Vol 11 (9) ◽  
pp. 3782
Author(s):  
Chu-Hui Lee ◽  
Chen-Wei Lin

Object detection is one of the important technologies in the field of computer vision. In the area of fashion apparel, object detection technology has various applications, such as apparel recognition, apparel detection, fashion recommendation, and online search. The recognition task is difficult for a computer because fashion apparel images have different characteristics of clothing appearance and material. Currently, fast and accurate object detection is the most important goal in this field. In this study, we proposed a two-phase fashion apparel detection method named YOLOv4-TPD (YOLOv4 Two-Phase Detection), based on the YOLOv4 algorithm, to address this challenge. The target categories for model detection were divided into the jacket, top, pants, skirt, and bag. According to the definition of inductive transfer learning, the purpose was to transfer the knowledge from the source domain to the target domain that could improve the effect of tasks in the target domain. Therefore, we used the two-phase training method to implement the transfer learning. Finally, the experimental results showed that the mAP of our model was better than the original YOLOv4 model through the two-phase transfer learning. The proposed model has multiple potential applications, such as an automatic labeling system, style retrieval, and similarity detection.


2015 ◽  
Vol 9 (4) ◽  
pp. 595-607 ◽  
Author(s):  
Jie Xin ◽  
Zhiming Cui ◽  
Pengpeng Zhao ◽  
Tianxu He

Sign in / Sign up

Export Citation Format

Share Document