Left Temporal Lobe Epilepsy Revealing Left Posterior Cortical Atrophy Due to Alzheimer's Disease

2015 ◽  
Vol 45 (2) ◽  
pp. 521-526 ◽  
Author(s):  
Benjamin Cretin ◽  
Laure Di Bitonto ◽  
Frederic Blanc ◽  
Eloi Magnin
2012 ◽  
Vol 25 (1) ◽  
pp. 111-119 ◽  
Author(s):  
James O'Donovan ◽  
Rosie Watson ◽  
Sean J. Colloby ◽  
Michael J. Firbank ◽  
Emma J. Burton ◽  
...  

ABSTRACTBackground: Previous studies suggest that posterior cortical atrophy may be a useful marker for early onset Alzheimer's disease (AD). Dementia with Lewy bodies (DLB) is associated with less temporal lobe atrophy than AD, though posterior cortical atrophy may be greater. Therefore, we assessed whether visual rating scales for assessing posterior atrophy (PA), medial temporal lobe atrophy (MTA), and ventricular enlargement (VEn) aid in the discrimination between AD, DLB, and normal aging.Methods: T1-weighted MRI scans acquired at 3 Tesla were visually rated for PA (range 0–3), MTA (range 0–4), and VEn (range 0–3) in older subjects with AD (n = 36), DLB (n = 35), and healthy controls (n = 35). The diagnostic utility of MTA, PA, and VEn visual ratings in distinguishing AD and DLB from controls as well as AD from DLB was investigated.Results: Significantly higher MTA ratings were associated with AD and DLB compared to controls (p < 0.001). MTA ratings were greater in AD relative to DLB (U = 384.5, p = 0.004). For PA ratings, scores did not differ between groups (p = 0.20). VEn ratings were significantly higher in AD and DLB compared to controls (p = 0.003), but similar between AD and DLB (U = 384.5, p = 0.4).Conclusions: Unlike findings reported in younger subjects, visual ratings for PA are not a reliable marker at older ages for distinguishing AD from controls, or for distinguishing DLB from AD. However, visual ratings of MTA and VEn may be useful markers in distinguishing both AD and DLB from older subjects without dementia.


2021 ◽  
Vol 26 (5) ◽  
pp. 16-23
Author(s):  
A. A. Tappakhov ◽  
T. Ya. Nikolaeva ◽  
T. E. Popova ◽  
N. A. Shnayder

Alzheimer’s disease (AD) is the most common cause of dementia in the population. Late onset AD has a classic clinical picture with short-term memory deficit, apraxia and agnosia. Patients with early-onset AD may have an atypical clinical picture which complicates diagnosis. Atypical AD variants include the logopenic variant of primary progressive aphasia, posterior cortical atrophy, behavioral, biparietal, and cortico-basal variants. These variants have pathomorphological signs similar to classical AD, but at an early stage they are characterized by focal atrophy which explains their clinical polymorphism. This article provides a review of the current literature on atypical types of AD and presents a clinical case of a 62-year-old patient in whom the disease debuted with prosopagnosia due to focal atrophy of the temporo-occipital regions of the non-dominant hemisphere.


2015 ◽  
Vol 11 (7S_Part_6) ◽  
pp. P274-P274 ◽  
Author(s):  
Keir X.X. Yong ◽  
Catherine Holloway ◽  
Amelia Carton ◽  
Biao Yang ◽  
Tatsuto Suzuki ◽  
...  

2018 ◽  
Vol 10 (2) ◽  
Author(s):  
Michael A. Meyer ◽  
Stephen A. Hudock

Posterior cortical atrophy is a rare condition first described in 1988 involving progressive degeneration and atrophy of the occipital cortex, often recognized after an unexplained homonymous hemianopsia may be discovered. We report a case in association with Alzheimer’s disease in a 77-year-old female, who underwent brain single-photon emission computed tomography as well brain positron emission tomography using Florbetapir to further evaluate progressive cognitive decline. The patient had also been followed in Ophthalmology for glaucoma, where a progressive unexplained change in her visual field maps were noted over one year consistent with a progressive right homonymous hemianopsia. This rare combination of findings in association with her dementia led to a detailed review of all her imaging studies, concluding with the surprising recognition for a clear hemi-atrophy of the primary left occipital cortex was occurring, consistent with Alzheimer’s disease affecting the primary visual cortex. Further awareness of this disease pattern is needed, as Alzheimer’s disease typically does not affect the primary visual cortex; other conditions to consider in general include Lewy Body dementia, cortico-basal degeneration and prion disease.


Brain ◽  
2020 ◽  
Author(s):  
Erik Kaestner ◽  
Anny Reyes ◽  
Austin Chen ◽  
Jun Rao ◽  
Anna Christina Macari ◽  
...  

Abstract Epilepsy incidence and prevalence peaks in older adults yet systematic studies of brain ageing and cognition in older adults with epilepsy remain limited. Here, we characterize patterns of cortical atrophy and cognitive impairment in 73 older adults with temporal lobe epilepsy (&gt;55 years) and compare these patterns to those observed in 70 healthy controls and 79 patients with amnestic mild cognitive impairment, the prodromal stage of Alzheimer’s disease. Patients with temporal lobe epilepsy were recruited from four tertiary epilepsy surgical centres; amnestic mild cognitive impairment and control subjects were obtained from the Alzheimer’s Disease Neuroimaging Initiative database. Whole brain and region of interest analyses were conducted between patient groups and controls, as well as between temporal lobe epilepsy patients with early-onset (age of onset &lt;50 years) and late-onset (&gt;50 years) seizures. Older adults with temporal lobe epilepsy demonstrated a similar pattern and magnitude of medial temporal lobe atrophy to amnestic mild cognitive impairment. Region of interest analyses revealed pronounced medial temporal lobe thinning in both patient groups in bilateral entorhinal, temporal pole, and fusiform regions (all P &lt; 0.05). Patients with temporal lobe epilepsy demonstrated thinner left entorhinal cortex compared to amnestic mild cognitive impairment (P = 0.02). Patients with late-onset temporal lobe epilepsy had a more consistent pattern of cortical thinning than patients with early-onset epilepsy, demonstrating decreased cortical thickness extending into the bilateral fusiform (both P &lt; 0.01). Both temporal lobe epilepsy and amnestic mild cognitive impairment groups showed significant memory and language impairment relative to healthy control subjects. However, despite similar performances in language and memory encoding, patients with amnestic mild cognitive impairment demonstrated poorer delayed memory performances relative to both early and late-onset temporal lobe epilepsy. Medial temporal lobe atrophy and cognitive impairment overlap between older adults with temporal lobe epilepsy and amnestic mild cognitive impairment highlights the risks of growing old with epilepsy. Concerns regarding accelerated ageing and Alzheimer’s disease co-morbidity in older adults with temporal lobe epilepsy suggests an urgent need for translational research aimed at identifying common mechanisms and/or targeting symptoms shared across a broad neurological disease spectrum.


Sign in / Sign up

Export Citation Format

Share Document