Digital fluxgate current sensor based on second harmonic detection

2020 ◽  
Vol 64 (1-4) ◽  
pp. 111-118
Author(s):  
Yutong Wei ◽  
Yang Wang ◽  
Meiling Wang ◽  
Chaofeng Ye

This paper presents a new digital fluxgate current sensor based on second harmonic detection for DC and AC measurement. The sensor utilizes a feedback loop to obtain an almost zero-flux condition, i.e., a balance between the magnetic flux of the primary current and the feedback current, in which way the feedback current is proportional to the primary current. The AC magnetic flux is detected with an induction coil, and the DC zero-flux condition is realized by magnetic saturation effect method, where the magnetic core is periodically magnetized and then the second harmonic of the magnetization current is calculated as an indication of the DC magnetic flux. After theoretical derivation, the operating principle of the sensor was investigated using a numerical simulation model built with Simulink of MATLAB. In addition, a prototype sensor was developed and tested. The experiment results demonstrate that the current sensor works properly for DC and AC measurement. The average error is about 0.06% for DC measurement.

2000 ◽  
Vol 39 (25) ◽  
pp. 4638 ◽  
Author(s):  
José A. Ferrari ◽  
César D. Perciante ◽  
Alfredo Dubra ◽  
Alfredo Arnaud ◽  
Erna M. Frins

Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 997-1003
Author(s):  
Antonio Poveda-Lerma ◽  
Guillermo Serrano-Callergues ◽  
Martin Riera-Guasp ◽  
Manuel Pineda-Sanchez ◽  
Ruben Puche-Panadero ◽  
...  

AbstractIn this paper the lamination effect on the model of a power transformer’s core with stacked E-I structure is analyzed. The distribution of the magnetic flux in the laminations depends on the stacking method. In this work it is shown, using a 3D FEM model and an experimental prototype, that the non-uniform distribution of the flux in a laminated E-I core with alternate-lap joint stack increases substantially the average value of the magnetic flux density in the core, compared with a butt joint stack. Both the simulated model and the experimental tests show that the presence of constructive air-gaps in the E-I junctions gives rise to a zig-zag flux in the depth direction. This inter-lamination flux reduces the magnetic flux density in the I-pieces and increases substantially the magnetic flux density in the E-pieces, with highly saturated points that traditional 2D analysis cannot reproduce. The relation between the number of laminations included in the model, and the computational resourses needed to build it, is also evaluated in this work.


2015 ◽  
Vol 15 (2) ◽  
pp. 77-84 ◽  
Author(s):  
Tao Ma ◽  
Shaotao Dai ◽  
Jingye Zhang ◽  
Lianqi Zhao

Abstract A Rogowski coil based sensor for current measurement in a cryogenic environment and results of its application for paralleled high temperature superconducting (HTS) coil current sharing are presented. The current sensor consists of a Rogowski coil and an integrator, where the coil output voltage is proportional to the derivative of primary current and the integrator transfers the differentiation to normal state. The Rogowski coil has promising applicability at cryogenic circumstance because its body is made of low temperature materials. The integrator ensures a large bandwidth with feasible magnitude, which is vital for dynamic current measurement during the quench of the HTS coil. The proposed current sensor is used for current sharing measurement of two paralleled Bi2223 HTS coils, and the experimental results show that the measurement precision is better than 0.5%.


Sign in / Sign up

Export Citation Format

Share Document