Neural network model analysis of consumption expenditure prediction of urban and rural residents based on Lasso regression analysis

2020 ◽  
Vol 38 (6) ◽  
pp. 7203-7214
Author(s):  
Yanyan Xu ◽  
Jiafu Cheng ◽  
Songlin Chen
Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6512
Author(s):  
Mario Tovar ◽  
Miguel Robles ◽  
Felipe Rashid

Due to the intermittent nature of solar energy, accurate photovoltaic power predictions are very important for energy integration into existing energy systems. The evolution of deep learning has also opened the possibility to apply neural network models to predict time series, achieving excellent results. In this paper, a five layer CNN-LSTM model is proposed for photovoltaic power predictions using real data from a location in Temixco, Morelos in Mexico. In the proposed hybrid model, the convolutional layer acts like a filter, extracting local features of the data; then the temporal features are extracted by the long short-term memory network. Finally, the performance of the hybrid model with five layers is compared with a single model (a single LSTM), a CNN-LSTM hybrid model with two layers and two well known popular benchmarks. The results also shows that the hybrid neural network model has better prediction effect than the two layer hybrid model, the single prediction model, the Lasso regression or the Ridge regression.


2007 ◽  
Vol 2007 ◽  
pp. 1-14 ◽  
Author(s):  
Muammer Nalbant ◽  
Hasan Gokkaya ◽  
İhsan Toktaş

Surface roughness, an indicator of surface quality, is one of the most specified customer requirements in machining of parts. In this study, the experimental results corresponding to the effects of different insert nose radii of cutting tools (0.4, 0.8, 1.2 mm), various depth of cuts (0.75, 1.25, 1.75, 2.25, 2.75 mm), and different feedrates (100, 130, 160, 190, 220 mm/min) on the surface quality of the AISI 1030 steel workpieces have been investigated using multiple regression analysis and artificial neural networks (ANN). Regression analysis and neural network-based models used for the prediction of surface roughness were compared for various cutting conditions in turning. The data set obtained from the measurements of surface roughness was employed to and tests the neural network model. The trained neural network models were used in predicting surface roughness for cutting conditions. A comparison of neural network models with regression model was carried out. Coefficient of determination was 0.98 in multiple regression model. The scaled conjugate gradient (SCG) model with 9 neurons in hidden layer has produced absolute fraction of variance(R2)values of 0.999 for the training data, and 0.998 for the test data. Predictive neural network model showed better predictions than various regression models for surface roughness. However, both methods can be used for the prediction of surface roughness in turning.


Sign in / Sign up

Export Citation Format

Share Document