A fast learning algorithm based on extreme learning machine for regular fuzzy neural network

2019 ◽  
Vol 36 (4) ◽  
pp. 3263-3269 ◽  
Author(s):  
Chunmei He ◽  
Yaqi Liu ◽  
Tong Yao ◽  
Fanhua Xu ◽  
Yanyun Hu ◽  
...  
2013 ◽  
Vol 765-767 ◽  
pp. 1854-1857
Author(s):  
Feng Wang ◽  
Jin Lin Ding ◽  
Hong Sun

Neural network generalized inverse (NNGI) can realize two-motor synchronous decoupling control, but traditional neural network (NN) exists many shortcomings, Regular extreme learning machine (RELM) has fast learning and good generalization ability, which is an ideal approach to approximate inverse system. But it is difficult to accurately give the reasonable number of hidden neurons. Improved incremental RELM(IIRELM) is prospected on the basis of analyzing RELM learning algorithm, which can automatically determine optimal network structure through gradually adding new hidden-layer neurons, and prediction model based on IIRELM is applied in two-motor closed-loop control based on NNGI, the decoupling control between velocity and tension is realized. The experimental results proved that the system has excellent performance.


2021 ◽  
Author(s):  
Jie Li ◽  
Jiale Hu ◽  
Guoliang Zhao ◽  
Sharina Huang ◽  
Yang Liu

Abstract Random vector functional link and extreme learning machine have been extended by the type-2 fuzzy sets with vector stacked methods, this extension leads to a new way to use tensor to construct learning structure for the type-2 fuzzy sets-based learning framework. In this paper, type-2 fuzzy sets-based random vector functional link, type-2 fuzzy sets-based extreme learning machine and Tikhonov-regularized extreme learning machine are fused into one network, a tensor way of stacking data is used to incorporate the nonlinear mappings when using type-2 fuzzy sets. In this way, the network could learning the sub-structure by three sub-structures' algorithms, which are merged into one tensor structure via the type-2 fuzzy mapping results. To the stacked single fuzzy neural network, the consequent part parameters learning are implemented by unfolding tensor-based matrix regression. The newly proposed stacked single fuzzy neural network shows a new way to design the hybrid fuzzy neural network with the higher order fuzzy sets and higher order data structure. The effective of the proposed stacked single fuzzy neural network are verified by the classical testing benchmarks and several statistical testing methods.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Pengbo Zhang ◽  
Zhixin Yang

Extreme learning machine (ELM) has been well recognized as an effective learning algorithm with extremely fast learning speed and high generalization performance. However, to deal with the regression applications involving big data, the stability and accuracy of ELM shall be further enhanced. In this paper, a new hybrid machine learning method called robust AdaBoost.RT based ensemble ELM (RAE-ELM) for regression problems is proposed, which combined ELM with the novel robust AdaBoost.RT algorithm to achieve better approximation accuracy than using only single ELM network. The robust threshold for each weak learner will be adaptive according to the weak learner’s performance on the corresponding problem dataset. Therefore, RAE-ELM could output the final hypotheses in optimally weighted ensemble of weak learners. On the other hand, ELM is a quick learner with high regression performance, which makes it a good candidate of “weak” learners. We prove that the empirical error of the RAE-ELM is within a significantly superior bound. The experimental verification has shown that the proposed RAE-ELM outperforms other state-of-the-art algorithms on many real-world regression problems.


Author(s):  
JUNHAI ZHAI ◽  
HONGYU XU ◽  
YAN LI

Extreme learning machine (ELM) is an efficient and practical learning algorithm used for training single hidden layer feed-forward neural networks (SLFNs). ELM can provide good generalization performance at extremely fast learning speed. However, ELM suffers from instability and over-fitting, especially on relatively large datasets. Based on probabilistic SLFNs, an approach of fusion of extreme learning machine (F-ELM) with fuzzy integral is proposed in this paper. The proposed algorithm consists of three stages. Firstly, the bootstrap technique is employed to generate several subsets of original dataset. Secondly, probabilistic SLFNs are trained with ELM algorithm on each subset. Finally, the trained probabilistic SLFNs are fused with fuzzy integral. The experimental results show that the proposed approach can alleviate to some extent the problems mentioned above, and can increase the prediction accuracy.


2011 ◽  
Vol 148-149 ◽  
pp. 707-712
Author(s):  
Li Wang ◽  
Lin Fang Qian ◽  
Qi Guo

Considering the testing requirements of dynamically loaded about servo system in weapons, a load simulator is presented in this paper and the transfer function of “extraneous torque" is obtained. In order to curb the amplitude of extra torque and achieve dynamic load simulation, this paper proposes a grey prediction-based fuzzy neural network controller, which selects Generalized Dynamic Fuzzy Neural Network as the learning algorithm and selects the ε-completeness as a criterion to determine the width of Gaussian functions. Simulation and experimental results show that the proposed torque controller can significantly reduce the amplitude of the extra torque.


Sign in / Sign up

Export Citation Format

Share Document