scholarly journals A Robust AdaBoost.RT Based Ensemble Extreme Learning Machine

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Pengbo Zhang ◽  
Zhixin Yang

Extreme learning machine (ELM) has been well recognized as an effective learning algorithm with extremely fast learning speed and high generalization performance. However, to deal with the regression applications involving big data, the stability and accuracy of ELM shall be further enhanced. In this paper, a new hybrid machine learning method called robust AdaBoost.RT based ensemble ELM (RAE-ELM) for regression problems is proposed, which combined ELM with the novel robust AdaBoost.RT algorithm to achieve better approximation accuracy than using only single ELM network. The robust threshold for each weak learner will be adaptive according to the weak learner’s performance on the corresponding problem dataset. Therefore, RAE-ELM could output the final hypotheses in optimally weighted ensemble of weak learners. On the other hand, ELM is a quick learner with high regression performance, which makes it a good candidate of “weak” learners. We prove that the empirical error of the RAE-ELM is within a significantly superior bound. The experimental verification has shown that the proposed RAE-ELM outperforms other state-of-the-art algorithms on many real-world regression problems.

Author(s):  
JUNHAI ZHAI ◽  
HONGYU XU ◽  
YAN LI

Extreme learning machine (ELM) is an efficient and practical learning algorithm used for training single hidden layer feed-forward neural networks (SLFNs). ELM can provide good generalization performance at extremely fast learning speed. However, ELM suffers from instability and over-fitting, especially on relatively large datasets. Based on probabilistic SLFNs, an approach of fusion of extreme learning machine (F-ELM) with fuzzy integral is proposed in this paper. The proposed algorithm consists of three stages. Firstly, the bootstrap technique is employed to generate several subsets of original dataset. Secondly, probabilistic SLFNs are trained with ELM algorithm on each subset. Finally, the trained probabilistic SLFNs are fused with fuzzy integral. The experimental results show that the proposed approach can alleviate to some extent the problems mentioned above, and can increase the prediction accuracy.


2018 ◽  
Vol 246 ◽  
pp. 03018
Author(s):  
Zuozhi Liu ◽  
JinJian Wu ◽  
Jianpeng Wang

Extreme learning machine (ELM) is a new novel learning algorithm for generalized single-hidden layer feedforward networks (SLFNs). Although it shows fast learning speed in many areas, there is still room for improvement in computational cost. To address this issue, this paper proposes an improved ELM (FRCFELM) which employs the full rank Cholesky factorization to compute output weights instead of traditional SVD. In addition, this paper proves in theory that the proposed FRCF-ELM has lower computational complexity. Experimental results over some benchmark applications indicate that the proposed FRCF-ELM learns faster than original ELM algorithm while preserving good generalization performance.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Yuqing Bian ◽  
Jianwei Yang ◽  
Ming Li ◽  
Rushi Lan

Extreme learning machine (ELM) is a fast learning algorithm of single-hidden layer feedforward neural networks (SLFNs). Compared with the traditional neural networks, the ELM algorithm has the advantages of fast learning speed and good generalization. At the same time, an ordinal logistic regression (LR) is a statistical method which is conceptually simple and algorithmically fast. In this paper, in order to improve the real-time performance, a flare forecasting method is introduced which is the combination of the LR model and the ELM algorithm. The predictive variables are three photospheric magnetic parameters, that is, the total unsigned magnetic flux, length of the strong-gradient magnetic polarity inversion line, and total magnetic energy dissipation. The LR model is used to map these three magnetic parameters of each active region into four probabilities. Consequently, the ELM is used to map the four probabilities into a binary label which is the final output. The proposed model is used to predict the occurrence of flares with a certain level over 24 hours following the time when the magnetogram is recorded. The experimental results show that the cascade algorithm not only improves learning speed to realize timely prediction but also has higher accuracy of X-class flare prediction in comparison with other methods.


2019 ◽  
Vol 36 (4) ◽  
pp. 3263-3269 ◽  
Author(s):  
Chunmei He ◽  
Yaqi Liu ◽  
Tong Yao ◽  
Fanhua Xu ◽  
Yanyun Hu ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Qingsong Xu

Extreme learning machine (ELM) is a learning algorithm for single-hidden layer feedforward neural network dedicated to an extremely fast learning. However, the performance of ELM in structural impact localization is unknown yet. In this paper, a comparison study of ELM with least squares support vector machine (LSSVM) is presented for the application on impact localization of a plate structure with surface-mounted piezoelectric sensors. Both basic and kernel-based ELM regression models have been developed for the location prediction. Comparative studies of the basic ELM, kernel-based ELM, and LSSVM models are carried out. Results show that the kernel-based ELM requires the shortest learning time and it is capable of producing suboptimal localization accuracy among the three models. Hence, ELM paves a promising way in structural impact detection.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Chao Wang ◽  
Jianhui Wang ◽  
Shusheng Gu

Extreme learning machine (ELM) as an emerging technology has recently attracted many researchers’ interest due to its fast learning speed and state-of-the-art generalization ability in the implementation. Meanwhile, the incremental extreme learning machine (I-ELM) based on incremental learning algorithm was proposed which outperforms many popular learning algorithms. However, the incremental algorithms with ELM do not recalculate the output weights of all the existing nodes when a new node is added and cannot obtain the least-squares solution of output weight vectors. In this paper, we propose orthogonal convex incremental learning machine (OCI-ELM) with Gram-Schmidt orthogonalization method and Barron’s convex optimization learning method to solve the nonconvex optimization problem and least-squares solution problem, and then we give the rigorous proofs in theory. Moreover, in this paper, we propose a deep architecture based on stacked OCI-ELM autoencoders according to stacked generalization philosophy for solving large and complex data problems. The experimental results verified with both UCI datasets and large datasets demonstrate that the deep network based on stacked OCI-ELM autoencoders (DOC-IELM-AEs) outperforms the other methods mentioned in the paper with better performance on regression and classification problems.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Imen Jammoussi ◽  
Mounir Ben Nasr

Extreme learning machine is a fast learning algorithm for single hidden layer feedforward neural network. However, an improper number of hidden neurons and random parameters have a great effect on the performance of the extreme learning machine. In order to select a suitable number of hidden neurons, this paper proposes a novel hybrid learning based on a two-step process. First, the parameters of hidden layer are adjusted by a self-organized learning algorithm. Next, the weights matrix of the output layer is determined using the Moore–Penrose inverse method. Nine classification datasets are considered to demonstrate the efficiency of the proposed approach compared with original extreme learning machine, Tikhonov regularization optimally pruned extreme learning machine, and backpropagation algorithms. The results show that the proposed method is fast and produces better accuracy and generalization performances.


2021 ◽  
Vol 15 (4) ◽  
pp. 639-650
Author(s):  
Bayu Galih Prianda ◽  
Edy Widodo

Bali Island of the Gods is one of the wealth of very popular tourist destinations and has the highest number of foreign tourists in Indonesia. It is very necessary to do more in-depth learning related to the projections or forecasting of foreign tourist visits to Bali at a certain period of time. Forecasting analysis used is to compare two methods, namely the Seasonal ARIMA method (SARIMA) and Extreme Learning Machine (ELM). The SARIMA method is a statistical method commonly used in forecasting time series data that contains seasonality and has good accuracy. While the ELM method is a new learning method of artificial neural networks that has fast learning speed and good accuracy. The results obtained indicate that the Seasonal ARIMA method is a better method used to predict the number of tourists to Bali in this case, because it has a smaller forecasting MAPE value of 4.97%. While the ELM method has a forecasting MAPE value of 7.62%.


From the point of learning speed as well as generalization, Extreme Learning Machine(ELM) is widely known as an effective learning algorithm than the conventional learning methods. Basically, hidden neurons are not required in neuron alike, instead, weight is the parameter that would need to learn about the link in between output and hidden layers. The creation of an output is to integrate each independent of several ELMs. The precise approach is included in a Multi-Agent System. The novelty of ELM-MAS (extreme learning machine based multi-agent system) is put forward in the paper for solving data regression problems. The ELMs consist of two layers which are the parent agent layer and individual agent layer. The effectiveness of the ELM-MAS model is proved with some activation functions employing benchmark datasets (abalone, strike and space-ga) and real world application (Nox emission). The outcomes indicate that the proposed model is capable to attain improved results than other approaches.


Sign in / Sign up

Export Citation Format

Share Document