scholarly journals Fuzzy model for human autonomous computing in extreme surveillance and it’s applications

Author(s):  
Varatharajan Ramachandran

This special issue of the Journal of Intelligent & Fuzzy Systems contains selected articles of Fuzzy model for human autonomous computing in extreme surveillance and it’s applications

2021 ◽  
Author(s):  
Edwin Lughofer ◽  
Mahardhika Pratama

AbstractEvolving fuzzy systems (EFS) have enjoyed a wide attraction in the community to handle learning from data streams in an incremental, single-pass and transparent manner. The main concentration so far lied in the development of approaches for single EFS models, basically used for prediction purposes. Forgetting mechanisms have been used to increase their flexibility, especially for the purpose to adapt quickly to changing situations such as drifting data distributions. These require forgetting factors steering the degree of timely out-weighing older learned concepts, whose adequate setting in advance or in adaptive fashion is not an easy and not a fully resolved task. In this paper, we propose a new concept of learning fuzzy systems from data streams, which we call online sequential ensembling of fuzzy systems (OS-FS). It is able to model the recent dependencies in streams on a chunk-wise basis: for each new incoming chunk, a new fuzzy model is trained from scratch and added to the ensemble (of fuzzy systems trained before). This induces (i) maximal flexibility in terms of being able to apply variable chunk sizes according to the actual system delay in receiving target values and (ii) fast reaction possibilities in the case of arising drifts. The latter are realized with specific prediction techniques on new data chunks based on the sequential ensemble members trained so far over time. We propose four different prediction variants including various weighting concepts in order to put higher weights on the members with higher inference certainty during the amalgamation of predictions of single members to a final prediction. In this sense, older members, which keep in mind knowledge about past states, may get dynamically reactivated in the case of cyclic drifts, which induce dynamic changes in the process behavior which are re-occurring from time to time later. Furthermore, we integrate a concept for properly resolving possible contradictions among members with similar inference certainties. The reaction onto drifts is thus autonomously handled on demand and on the fly during the prediction stage (and not during model adaptation/evolution stage as conventionally done in single EFS models), which yields enormous flexibility. Finally, in order to cope with large-scale and (theoretically) infinite data streams within a reasonable amount of prediction time, we demonstrate two concepts for pruning past ensemble members, one based on atypical high error trends of single members and one based on the non-diversity of ensemble members. The results based on two data streams showed significantly improved performance compared to single EFS models in terms of a better convergence of the accumulated chunk-wise ahead prediction error trends, especially in the case of regular and cyclic drifts. Moreover, the more advanced prediction schemes could significantly outperform standard averaging over all members’ outputs. Furthermore, resolving contradictory outputs among members helped to improve the performance of the sequential ensemble further. Results on a wider range of data streams from different application scenarios showed (i) improved error trend lines over single EFS models, as well as over related AI methods OS-ELM and MLPs neural networks retrained on data chunks, and (ii) slightly worse trend lines than on-line bagged EFS (as specific EFS ensembles), but with around 100 times faster processing times (achieving low processing times way below requiring milli-seconds for single samples updates).


2020 ◽  
Vol 22 (2) ◽  
pp. 476-476 ◽  
Author(s):  
Huchang Liao ◽  
Abbas Mardani ◽  
Edmundas Kazimieras Zavadskas ◽  
Benjamin Bedregal

2010 ◽  
Vol 15 (12) ◽  
pp. 2299-2301 ◽  
Author(s):  
Yusuke Nojima ◽  
Rafael Alcalá ◽  
Hisao Ishibuchi ◽  
Francisco Herrera

Author(s):  
Jorma K. Mattila ◽  

Forty years have passed since Prof. Lotfi A. Zadeh introduced fuzzy set theory in his known article “Fuzzy Sets” in Information and Control, 8, 1965, sparking new development in information technology and automation. This article also formed the roots of the Fuzzy Systems Research Group, an active part of the Laboratory of Applied Mathematics, Lappeenranta University of Technology. Rough set theory, evolutionary computing, and neural computing followed, together with their combinations. This Special Issue presents 10 papers representing these areas. Many of the contributors of this Special Issue belong to the Fuzzy Systems Research Group and others work in close co-operations with this group. The first paper considers the use of linguistically expressed objectives in multicriteria decision-making in selection processes based on topological similarity M-relations between L-sets. The second presents basic ideas and fundamental concepts of rough set theory and considers properties of rough approximations. The third combines Lukasiewicz logics and modifier algebras based on Zadeh algebras, i.e., quasi-Boolean algebras of membership functions. The fourth applies Mö{o}bius transformations, known in complex analysis, to fuzzy subgroups in a topological point of view. The fifth discusses the stability of a classifier based on the Lukasiewicz structure and tests Schweizer and Sklar's implications with an extension to generalized mean to a classification task. The sixth deals with the interpretability problem of first-order Takagi-Sugeno systems and interpolation issues, developing a special two-model configuration. The seventh describes an expert system for defining an athlete's aerobic and anaerobic thresholds that successfully mimics decision-making by sport medicine professionals, with system functionality based on fuzzy comparison measures, generalized means, fuzzy membership functions, and differential evolution. The eighth applies a differential evolution algorithm-based method to training radial basis function networks with variables including centers, weights, and widths. The ninth compares two floating-point-encoded evolutionary algorithms – differential evolution and a generalized generation gap model – using a set of problems with different characteristics. The tenth proposes a new approach for monitoring break tendency of paper webs on modern paper machines, combining linguistic equations and fuzzy logic in a case-based reasoning framework. As the Guest Editor of this Special Issue, I thank the contributors and reviewers for their time and effort in making this special issue possible. I am also grateful to the JACIII editorial board, especially Prof. Kaoru Hirota, the Editors-in-Chief and Managing Editor Kenta Uchino, and the staff of Fuji Technology Press for the opportunity to participate in this work. I also thank Prof. Kaoru Hirota for organizing the reviewing of my paper.


Sign in / Sign up

Export Citation Format

Share Document