scholarly journals The Effect of Short Pulse Width Settings on the Therapeutic Window in Subthalamic Nucleus Deep Brain Stimulation for Parkinson’s disease

2018 ◽  
Vol 8 (2) ◽  
pp. 273-279 ◽  
Author(s):  
Viswas Dayal ◽  
Timothy Grover ◽  
Patricia Limousin ◽  
Harith Akram ◽  
Davide Cappon ◽  
...  
Author(s):  
Margherita Fabbri ◽  
Federico Natale ◽  
Carlo Alberto Artusi ◽  
Alberto Romagnolo ◽  
Marco Bozzali ◽  
...  

2020 ◽  
pp. 1-8
Author(s):  
Mathilde Devaluez ◽  
Melissa Tir ◽  
Pierre Krystkowiak ◽  
Mickael Aubignat ◽  
Michel Lefranc

OBJECTIVEHigh-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) is effective in the treatment of motor symptoms of Parkinson’s disease. Using a patient-specific lead and volume of tissue activated (VTA) software, it is possible to visualize contact positions in the context of the patient’s own anatomy. In this study, the authors’ aim was to demonstrate that VTA software can be used in clinical practice to help determine the clinical effectiveness of stimulation in patients with Parkinson’s disease undergoing DBS of the STN.METHODSBrain images of 26 patients undergoing STN DBS were analyzed using VTA software. Preoperative clinical and neuropsychological data were collected. Contacts were chosen by two experts in DBS blinded to the clinical data. A therapeutic window of amplitude was determined. These results were compared with the parameter settings for each patient. Data were obtained at 3 months and 1 year postsurgery.RESULTSIn 90.4% (95% CI 82%–98%) of the patients, the contacts identified by the VTA software were concordant with the clinically effective contacts or with an effective contact in contact-by-contact testing. The therapeutic window of amplitude selected virtually included 81.3% of the clinical amplitudes.CONCLUSIONSVTA software appears to present significant concordance with clinical data for selecting contacts and stimulation parameters that could help in postoperative follow-up and programming.


2018 ◽  
Vol 61 (3) ◽  
pp. 510-524 ◽  
Author(s):  
Thea Knowles ◽  
Scott Adams ◽  
Anita Abeyesekera ◽  
Cynthia Mancinelli ◽  
Greydon Gilmore ◽  
...  

Purpose The settings of 3 electrical stimulation parameters were adjusted in 12 speakers with Parkinson's disease (PD) with deep brain stimulation of the subthalamic nucleus (STN-DBS) to examine their effects on vowel acoustics and speech intelligibility. Method Participants were tested under permutations of low, mid, and high STN-DBS frequency, voltage, and pulse width settings. At each session, participants recited a sentence. Acoustic characteristics of vowel production were extracted, and naive listeners provided estimates of speech intelligibility. Results Overall, lower-frequency STN-DBS stimulation (60 Hz) was found to lead to improvements in intelligibility and acoustic vowel expansion. An interaction between speaker sex and STN-DBS stimulation was found for vowel measures. The combination of low frequency, mid to high voltage, and low to mid pulse width led to optimal speech outcomes; however, these settings did not demonstrate significant speech outcome differences compared with the standard clinical STN-DBS settings, likely due to substantial individual variability. Conclusions Although lower-frequency STN-DBS stimulation was found to yield consistent improvements in speech outcomes, it was not found to necessarily lead to the best speech outcomes for all participants. Nevertheless, frequency may serve as a starting point to explore settings that will optimize an individual's speech outcomes following STN-DBS surgery. Supplemental Material https://doi.org/10.23641/asha.5899228


Author(s):  
Ashesh A. Thaker ◽  
Kartik M. Reddy ◽  
John A. Thompson ◽  
Pamela David Gerecht ◽  
Mark S. Brown ◽  
...  

<b><i>Introduction:</i></b> Deep brain stimulation of the zona incerta is effective at treating tremor and other forms of parkinsonism. However, the structure is not well visualized with standard MRI protocols making direct surgical targeting unfeasible and contributing to inconsistent clinical outcomes. In this study, we applied coronal gradient echo MRI to directly visualize the rostral zona incerta in Parkinson’s disease patients to improve targeting for deep brain stimulation. <b><i>Methods:</i></b> We conducted a prospective study to optimize and evaluate an MRI sequence to visualize the rostral zona incerta in patients with Parkinson’s disease (<i>n</i> = 31) and other movement disorders (<i>n</i> = 13). We performed a contrast-to-noise ratio analysis of specific regions of interest to quantitatively assess visual discrimination of relevant deep brain structures in the optimized MRI sequence. Regions of interest were independently assessed by 2 neuroradiologists, and interrater reliability was assessed. <b><i>Results:</i></b> Rostral zona incerta and subthalamic nucleus were well delineated in our 5.5-min MRI sequence, indicated by excellent interrater agreement between neuroradiologists for region-of-interest measurements (&#x3e;0.90 intraclass coefficient). Mean contrast-to-noise ratio was high for both rostral zona incerta (6.39 ± 3.37) and subthalamic nucleus (17.27 ± 5.61) relative to adjacent white matter. There was no significant difference between mean signal intensities or contrast-to-noise ratio for Parkinson’s and non-Parkinson’s patients for either structure. <b><i>Discussion/Conclusion:</i></b> Our optimized coronal gradient echo MRI sequence delineates subcortical structures relevant to traditional and novel deep brain stimulation targets, including the zona incerta, with high contrast-to-noise. Future studies will prospectively apply this sequence to surgical planning and postimplantation outcomes.


2019 ◽  
Vol 9 (3) ◽  
pp. 51 ◽  
Author(s):  
Rens Verhagen ◽  
Lo Bour ◽  
Vincent Odekerken ◽  
Pepijn van den Munckhof ◽  
P. Schuurman ◽  
...  

Motor improvement after deep brain stimulation (DBS) in the subthalamic nucleus (STN) may vary substantially between Parkinson’s disease (PD) patients. Research into the relation between improvement and active contact location requires a correction for anatomical variation. We studied the relation between active contact location relative to the neurophysiological STN, estimated by the intraoperative microelectrode recordings (MER-based STN), and contralateral motor improvement after one year. A generic STN shape was transformed to fit onto the stereotactically defined MER sites. The location of 43 electrodes (26 patients), derived from MRI-fused CT images, was expressed relative to this patient-specific MER-based STN. Using regression analyses, the relation between contact location and motor improvement was studied. The regression model that predicts motor improvement based on levodopa effect alone was significantly improved by adding the one-year active contact coordinates (R2 change = 0.176, p = 0.014). In the combined prediction model (adjusted R2 = 0.389, p < 0.001), the largest contribution was made by the mediolateral location of the active contact (standardized beta = 0.490, p = 0.002). With the MER-based STN as a reference, we were able to find a significant relation between active contact location and motor improvement. MER-based STN modeling can be used to complement imaging-based STN models in the application of DBS.


PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e43261 ◽  
Author(s):  
Diana M. E. Torta ◽  
Vincenzo Vizzari ◽  
Lorys Castelli ◽  
Maurizio Zibetti ◽  
Michele Lanotte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document