scholarly journals Algorithm for reducing computational costs in problems of calculation of asymmetrically loaded shells of rotation

Author(s):  
Anatolii Dzyuba ◽  
Inha Safronova ◽  
Larysa Levitina

The problem of calculating the shells of rotation of a variable along the meridian of rigidity under asymmetric loading is reduced o a set of systems of one-dimensional boundary value problems with respect to the amplitudes of decomposition of the required functions into trigonometric Fourier series. A method for reducing the number of one-dimensional boundary value problems required to achieve a given accuracy in determining the stress-strain state of the shells of rotation with a variable along the meridian wall thickness under asymmetric load. The idea of the proposed approach is to apply periodic extrapolation (prediction) of the values of the decomposition coefficients of the required functions using the results of calculations of previous coefficients of the corresponding trigonometric series, thus replacing them with some prediction values calculated by simple formulas. To solve this problem, we propose the joint use of Aitken-Steffens extrapolation dependences and Adams method in the form of incremental component, which is quite effective in solving the Cauchy problem for systems of ordinary differential equations and is based on Lagrange and Newton extrapolation dependences. The validity of the proposed approach was verified b the results of a systematic numerical experiment by predicting the values of the expansion coefficients in the Fourier series of known functions of one variable. The approach is quite effective in the calculation of asymmetrically loaded shells of rotation with variable along the meridian thickness, when the coefficients of decomposition of the required functions into Fourier series are functions of the longitudina lcoordinate and are calculated by solving the corresponding boundary value problem. In this case, the approach allows solving solutions of differential equations for the amplitudes of decompositionin to trigonometric series only for individual "reference" harmonics, and the amplitudes for every third harmonic can be calculated by interpolating their values for all node integration points of the corresponding boundary value problem. This significantly reduces the computational cost of obtaining the solution as a whole. As an example, the results of the calculation of the stress-strain state of a steel annular plate under asymmetric transverse loading are given.

2021 ◽  
pp. 137-145
Author(s):  
A. Kravtsov ◽  
◽  
D. Levkin ◽  
O. Makarov ◽  
◽  
...  

The article presents the theoretical and methodological principles for forecasting and mathematical modeling of possible risks in technological and biotechnological systems. The authors investigated in details the possible approach to the calculation of the goal function and its parameters. Considerable attention is paid to substantiating the correctness of boundary value problems and Cauchy problems. In mechanics, engineering, and biology, Cauchy problems and boundary value problems of differential equations are used to model physical processes. It is important that differential equations have a single physically sound solution. The authors of this article investigate the specific features of boundary value problems and Cauchy problems with boundary conditions in a two-point medium, and determine the conditions for the correctness of such problems in the spaces of power growth functions. The theory of pseudo-differential operators in the space of generalized functions was used to prove the correctness of boundary value problems. The application of the obtained results will make it possible to guarantee the correctness of mathematical models built in conditions of uncertainty and possible risks. As an example of a computational mathematical model that describes the state of the studied object of non-standard shape, the authors considered the boundary value problem of the system of differential equations of thermal conductivity for the embryo under the action of a laser beam. For such a boundary value problem, it is impossible to guarantee the existence and uniqueness of the solution of the system of differential equations. To be sure of the existence of a single solution, it is necessary either not to take into account the three-layer structure of the microbiological object, or to determine the conditions for the correctness of the boundary value problem. Applying the results obtained by the authors, the correctness of the boundary value problem of systems of differential equations of thermal conductivity for the embryo is proved taking into account the three-layer structure of the microbiological object. This makes it possible to increase the accuracy and speed of its implementation on the computer. Key words: forecasting, risk, correctness, boundary value problems, conditions of uncertainty


Author(s):  
A. Cañada ◽  
R. Ortega

SynopsisThe existence of solutions to equations in normed spaces is proved when the nonlinear part of the equation satisfies growth and asymptotic conditions, whether the linear part is invertible or not. For this, we use the coincidence degree theory developed by Mawhin. We apply our abstract results to boundary value problems for nonlinear vector ordinary differential equations. In particular, we consider the Picard boundary value problem at the first eigenvalue and the periodic boundary value problem at resonance. In both cases, the nonlinear term can be of superlinear type. Also, necessary and sufficient conditions of Landesman-Lazer type are obtained.


2001 ◽  
Vol 14 (2) ◽  
pp. 183-187 ◽  
Author(s):  
Xinzhi Liu ◽  
Farzana A. McRae

This paper studies boundary value problems for parametric differential equations. By using the method of upper and lower solutions, monotone sequences are constructed and proved to converge to the extremal solutions of the boundary value problem.


Sign in / Sign up

Export Citation Format

Share Document