scholarly journals Product Action Taken Relationship

2020 ◽  
Author(s):  
Keyword(s):  
10.37236/4831 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Ashish Mishra ◽  
Murali K. Srinivasan

Let $G$ be a finite group acting on the finite set $X$ such that the corresponding (complex) permutation representation is multiplicity free. There is a natural rank and order preserving action of the wreath product $G\sim S_n$ on the generalized Boolean algebra $B_X(n)$. We explicitly block diagonalize the commutant of this action.


2001 ◽  
Vol 33 (6) ◽  
pp. 653-661 ◽  
Author(s):  
CAI HENG LI ◽  
CHERYL E. PRAEGER

A construction is given of an infinite family of finite self-complementary, vertex-transitive graphs which are not Cayley graphs. To the authors' knowledge, these are the first known examples of such graphs. The nature of the construction was suggested by a general study of the structure of self-complementary, vertex-transitive graphs. It involves the product action of a wreath product of permutation groups.


2012 ◽  
Vol 92 (1) ◽  
pp. 127-136 ◽  
Author(s):  
CHERYL E. PRAEGER ◽  
CSABA SCHNEIDER

AbstractWe consider the wreath product of two permutation groups G≤Sym Γ and H≤Sym Δ as a permutation group acting on the set Π of functions from Δ to Γ. Such groups play an important role in the O’Nan–Scott theory of permutation groups and they also arise as automorphism groups of graph products and codes. Let X be a subgroup of Sym Γ≀Sym Δ. Our main result is that, in a suitable conjugate of X, the subgroup of SymΓ induced by a stabiliser of a coordinate δ∈Δ only depends on the orbit of δ under the induced action of X on Δ. Hence, if X is transitive on Δ, then X can be embedded into the wreath product of the permutation group induced by the stabiliser Xδ on Γ and the permutation group induced by X on Δ. We use this result to describe the case where X is intransitive on Δ and offer an application to error-correcting codes in Hamming graphs.


1989 ◽  
Vol 40 (2) ◽  
pp. 255-279 ◽  
Author(s):  
L. G. Kovács

There is a familiar construction with two finite, transitive permutation groups as input and a finite, transitive permutation group, called their wreath product, as output. The corresponding ‘imprimitive wreath decomposition’ concept is the first subject of this paper. A formal definition is adopted and an overview obtained for all such decompositions of any given finite, transitive group. The result may be heuristically expressed as follows, exploiting the associative nature of the construction. Each finite transitive permutation group may be written, essentially uniquely, as the wreath product of a sequence of wreath-indecomposable groups, amid the two-factor wreath decompositions of the group are precisely those which one obtains by bracketing this many-factor decomposition.If both input groups are nontrivial, the output above is always imprimitive. A similar construction gives a primitive output, called the wreath product in product action, provided the first input group is primitive and not regular. The second subject of the paper is the ‘product action wreath decomposition’ concept dual to this. An analogue of the result stated above is established for primitive groups with nonabelian socle.Given a primitive subgroup G with non-regular socle in some symmetric group S, how many subgroups W of S which contain G and have the same socle, are wreath products in product action? The third part of the paper outlines an algorithm which reduces this count to questions about permutation groups whose degrees are very much smaller than that of G.


2008 ◽  
Vol 308 (2-3) ◽  
pp. 386-394 ◽  
Author(s):  
Peter J. Cameron ◽  
Daniele A. Gewurz ◽  
Francesca Merola
Keyword(s):  

2005 ◽  
Vol 358 (4) ◽  
pp. 1619-1641 ◽  
Author(s):  
Robert W. Baddeley ◽  
Cheryl E. Praeger ◽  
Csaba Schneider

2020 ◽  
Vol 19 ◽  
pp. 99-106
Author(s):  
Siahi Maxwell Agwanda ◽  
Patrick Kimani ◽  
Ireri Kamuti

The action of affine groups on Galois field has been studied.  For instance,  studied the action of on Galois field for  a power of prime.  In this paper, the rank and subdegree of the direct product of affine groups over Galois field acting on the cartesian product of Galois field is determined. The application of the definition of the product action is used to achieve this. The ranks and subdegrees are used in determination of suborbital graph, the non-trivial suborbital graphs that correspond to this action have been constructed using Sims procedure and were found to have a girth of 0, 3, 4 and 6.


2019 ◽  
Vol 40 (12) ◽  
pp. 3188-3216
Author(s):  
SCOTT ATKINSON

We consider the notion of the graph product of actions of discrete groups $\{G_{v}\}$ on a $C^{\ast }$-algebra ${\mathcal{A}}$ and show that under suitable commutativity conditions the graph product action $\star _{\unicode[STIX]{x1D6E4}}\unicode[STIX]{x1D6FC}_{v}:\star _{\unicode[STIX]{x1D6E4}}G_{v}\curvearrowright {\mathcal{A}}$ has the Haagerup property if each action $\unicode[STIX]{x1D6FC}_{v}:G_{v}\curvearrowright {\mathcal{A}}$ possesses the Haagerup property. This generalizes the known results on graph products of groups with the Haagerup property. To accomplish this, we introduce the graph product of multipliers associated to the actions and show that the graph product of positive-definite multipliers is positive definite. These results have impacts on left-transformation groupoids and give an alternative proof of a known result for coarse embeddability. We also record a cohomological characterization of the Haagerup property for group actions.


Sign in / Sign up

Export Citation Format

Share Document