scholarly journals Distributed frequent hierarchical pattern mining for robust and efficient large-scale association discovery

2017 ◽  
Author(s):  
◽  
Michael Phinney

Frequent pattern mining is a classic data mining technique, generally applicable to a wide range of application domains, and a mature area of research. The fundamental challenge arises from the combinatorial nature of frequent itemsets, scaling exponentially with respect to the number of unique items. Apriori-based and FPTree-based algorithms have dominated the space thus far. Initial phases of this research relied on the Apriori algorithm and utilized a distributed computing environment; we proposed the Cartesian Scheduler to manage Apriori's candidate generation process. To address the limitation of bottom-up frequent pattern mining algorithms such as Apriori and FPGrowth, we propose the Frequent Hierarchical Pattern Tree (FHPTree): a tree structure and new frequent pattern mining paradigm. The classic problem is redefined as frequent hierarchical pattern mining where the goal is to detect frequent maximal pattern covers. Under the proposed paradigm, compressed representations of maximal patterns are mined using a top-down FHPTree traversal, FHPGrowth, which detects large patterns before their subsets, thus yielding significant reductions in computation time. The FHPTree memory footprint is small; the number of nodes in the structure scales linearly with respect to the number of unique items. Additionally, the FHPTree serves as a persistent, dynamic data structure to index frequent patterns and enable efficient searches. When the search space is exponential, efficient targeted mining capabilities are paramount; this is one of the key contributions of the FHPTree. This dissertation will demonstrate the performance of FHPGrowth, achieving a 300x speed up over state-of-the-art maximal pattern mining algorithms and approximately a 2400x speedup when utilizing FHPGrowth in a distributed computing environment. In addition, we allude to future research opportunities, and suggest various modifications to further optimize the FHPTree and FHPGrowth. Moreover, the methods we offer will have an impact on other data mining research areas including contrast set mining as well as spatial and temporal mining.

Author(s):  
Anne Denton

Time series data is of interest to most science and engineering disciplines and analysis techniques have been developed for hundreds of years. There have, however, in recent years been new developments in data mining techniques, such as frequent pattern mining, that take a different perspective of data. Traditional techniques were not meant for such pattern-oriented approaches. There is, as a result, a significant need for research that extends traditional time-series analysis, in particular clustering, to the requirements of the new data mining algorithms.


2011 ◽  
Vol 403-408 ◽  
pp. 1022-1027 ◽  
Author(s):  
Gauravjeet Singh ◽  
Sandeep Bal ◽  
Poonamjeet Kaur ◽  
Kanwaljit Kaur

Frequent pattern mining has been a focused theme in data mining research. Lots of techniques have been proposed to improve the performance of frequent pattern mining algorithms. This paper presents review of different frequent mining techniques. With each technique, we have provided brief description of the technique. At the end, we compared different frequent pattern mining techniques.


2008 ◽  
pp. 1280-1299
Author(s):  
Moonjung Cho ◽  
Jian Pei ◽  
Haixun Wang ◽  
Wei Wang

Frequent pattern mining is an important data-mining problem with broad applications. Although there are many in-depth studies on efficient frequent pattern mining algorithms and constraint pushing techniques, the effectiveness of frequent pattern mining remains a serious concern: It is non-trivial and often tricky to specify appropriate support thresholds and proper constraints. In this paper, we propose a novel theme of preference-based frequent pattern mining. A user simply can specify a preference instead of setting detailed parameters in constraints. We identify the problem of preference-based frequent pattern mining and formulate the preferences for mining. We develop an efficient framework to mine frequent patterns with preferences. Interestingly, many preferences can be pushed deep into the mining by properly employing the existing efficient frequent pattern mining techniques. We conduct an extensive performance study to examine our method. The results indicate that preference-based frequent pattern mining is effective and efficient. Furthermore, we extend our discussion from pattern-based frequent pattern mining to preference-based data mining in principle and draw a general framework.


Author(s):  
Sudhir Tirumalasetty ◽  
A. Divya ◽  
D. Rahitya Lakshmi ◽  
Ch. Durga Bhavani ◽  
D. Anusha

Frequent pattern mining is an essential data-mining task, with a goal of discovering knowledge in the form of repeated patterns. Many efficient pattern-mining algorithms have been discovered in the last two decades, yet most do not scale to the type of data we are presented with today, the so-called “Big Data”. Scalable parallel algorithms hold the key to solving the problem in this context. This paper reviews recent advances in parallel frequent pattern mining, analysing them through the Big Data lens. Load balancing and work partitioning are the major challenges to be conquered. These challenges always invoke innovative methods to do, as Big Data evolves with no limits. The biggest challenge than before is conquering unstructured data for finding frequent patterns. To accomplish this Semi Structured Doc-Model and ranking of patterns are used.


Author(s):  
Anne Denton

Time series data is of interest to most science and engineering disciplines and analysis techniques have been developed for hundreds of years. There have, however, in recent years been new developments in data mining techniques, such as frequent pattern mining, which take a different perspective of data. Traditional techniques were not meant for such pattern-oriented approaches. There is, as a result, a significant need for research that extends traditional time-series analysis, in particular clustering, to the requirements of the new data mining algorithms.


2021 ◽  
Vol 169 ◽  
pp. 114530
Author(s):  
Areej Ahmad Abdelaal ◽  
Sa'ed Abed ◽  
Mohammad Al-Shayeji ◽  
Mohammad Allaho

2013 ◽  
Vol 443 ◽  
pp. 402-406 ◽  
Author(s):  
Shang Gao ◽  
Mei Mei Li

With the rapid development of the number of mobile phone users has accumulated a large number of graph data, graph data mining has gradually become a hot area of research. Traditional data such as clustering, classification, frequent pattern mining gradually extended to the field of graph data mining research. Introduced at this stage graph data mining technology research progress, summarizes the characteristics of the graphical data mining, practical significance, the main problem, and scenarios to discuss and forecast chart data, especially research on uncertain graph data become trends and hot spots.


Sign in / Sign up

Export Citation Format

Share Document