scholarly journals Timing the Application of Beneficial Nematodes to Mole Cricket Activity on Pasture to Optimize Control

EDIS ◽  
2006 ◽  
Vol 2006 (20) ◽  
Author(s):  
Martin B. Adjei ◽  
G. C. Smart, Jr. ◽  
J. Howard Frank ◽  
Norman C. Leppla

Revised! ENY-663, a 3-page illustrated fact sheet by M.B. Adjei, G.C. Smart, Jr., J.H. Frank and N.C. Leppla, provides guidance for optimizing a match between infective juvenile Ss nematodes and mole cricket hosts, and also describes the process for applying this biological control agent to pastures and turfgrasses. This version includes updated recommendations. Published by the UF Department of Entomology and Nematology, August 2006.

Nematology ◽  
2017 ◽  
Vol 19 (9) ◽  
pp. 1035-1050 ◽  
Author(s):  
Annika Pieterse ◽  
Louwrens R. Tiedt ◽  
Antoinette P. Malan ◽  
Jenna L. Ross

Worldwide interest in Phasmarhabditis originates from the successful commercialisation of P. hermaphrodita as a biological control agent against molluscs in Europe. To date, P. hermaphrodita has not been isolated from South Africa and, therefore, the formulated product may not be sold locally. During a survey for mollusc-associated nematodes, P. papillosa was dissected from the slug, Deroceras reticulatum, collected from George, South Africa. The nematode was identified using a combination of morphological, morphometric, molecular and phylogenetic techniques. Virulence tests were conducted which demonstrated that P. papillosa caused significant mortality to the European invasive slug Deroceras panormitanum. Additional data are provided in the morphometrics of the infective juvenile and in the molecular identification, using the mitochondrial cytochrome c oxidase subunit I (cox1) gene. This is the first report of P. papillosa from the African continent and of its virulence against D. panormitanum.


2018 ◽  
Vol 10 (4) ◽  
pp. 503-507
Author(s):  
Karim SAEIDI ◽  
Hossein PEZHMAN ◽  
Hadi KARIMIPOUR-FARD

Stored-product pests in the family Bruchidae of Coleoptera represent important pests affecting legume seeds. The lentil weevil, Bruchus lentis Froelich (Coleoptera: Chrysomelidae: Bruchinae) is one of the major lentil pests in Iran and in the world. The economic losses caused by this pest on lentil grow up to 40%. Synthetic pesticides are currently the chosen method to protect stored grain from insect damage. However, their widespread use has led to the development of pest strains resistant to insecticides and pest resurgence. In recent years, nonchemical methods, including biological agents are considered safe methods to control the stored grain pests. Positive characteristics of entomopathogenic nematodes as biological control factors of arthropod pests, introduce them as an appropriate option for controlling the integrated pest management of lentil weevil. In the present study, an isolate of entomopathogenic nematode, Steinernema feltiae, isolated from soils around Yasouj and based on morphological traits and morphometric data were identified.  Adult insects of lentil weevil were exposed to concentrations of 0; 500; 1,000; 2,000 and 3,000 infective juvenile/ml of distilled water at different temperatures (20, 23, 26 and 29 °C). Insects were placed on filter paper impregnated with 1 ml of nematode suspension in Petri dishes for three days. Mortality of the insects was recorded every 24 hours. The highest mortality was recorded after 72 hours, which represented 79.40%, at the concentration of 3,000 infective juvenile at 26 °C.


2002 ◽  
Vol 55 ◽  
pp. 433-433
Author(s):  
B.A. Gresham ◽  
M.K. Kay ◽  
W. Faulds ◽  
T.M. Withers

Author(s):  
Fazila Yousuf ◽  
Peter A. Follett ◽  
Conrad P. D. T. Gillett ◽  
David Honsberger ◽  
Lourdes Chamorro ◽  
...  

AbstractPhymastichus coffea LaSalle (Hymenoptera:Eulophidae) is an adult endoparasitoid of the coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera:Curculionidae:Scolytinae), which has been introduced in many coffee producing countries as a biological control agent. To determine the effectiveness of P. coffea against H. hampei and environmental safety for release in Hawaii, we investigated the host selection and parasitism response of adult females to 43 different species of Coleoptera, including 23 Scolytinae (six Hypothenemus species and 17 others), and four additional Curculionidae. Non-target testing included Hawaiian endemic, exotic and beneficial coleopteran species. Using a no-choice laboratory bioassay, we demonstrated that P. coffea was only able to parasitize the target host H. hampei and four other adventive species of Hypothenemus: H. obscurus, H. seriatus, H. birmanus and H. crudiae. Hypothenemus hampei had the highest parasitism rate and shortest parasitoid development time of the five parasitized Hypothenemus spp. Parasitism and parasitoid emergence decreased with decreasing phylogenetic relatedness of the Hypothenemus spp. to H. hampei, and the most distantly related species, H. eruditus, was not parasitized. These results suggest that the risk of harmful non-target impacts is low because there are no native species of Hypothenemus in Hawaii, and P. coffea could be safely introduced for classical biological control of H. hampei in Hawaii.


Sign in / Sign up

Export Citation Format

Share Document