scholarly journals South China Sea Wave Characteristics under Combined Wind Forcing of Typhoon and Winter Monsoon

Author(s):  
Peng QI
2008 ◽  
Vol 38 (3) ◽  
pp. 726-732 ◽  
Author(s):  
Guihua Wang ◽  
Dake Chen ◽  
Jilan Su

Abstract Generation of mesoscale eddies in the eastern South China Sea (SCS) in winters during August 1999 to July 2002 is studied with a reduced-gravity model. It is found that the orographic wind jets associated with the northeast winter monsoon and the gaps in the mountainous island chain along the eastern boundary of the SCS can spin up cyclonic and anticyclonic eddies over the SCS. Results suggest that direct wind forcing could be an important generation mechanism for the rich eddy activity in the SCS, and that to simulate this mechanism the resolution of the wind forcing has to be high enough to resolve the local wind jets induced by orographic effects.


Author(s):  
Qun Zhou ◽  
Lixin Wei

Abstract It is of great practical importance to understand the variability of the South China Sea (SCS) monsoon on intraseasonal time scales, since the anomalous enhancement of the SCS monsoon may exert serious impacts on the safety of offshore engineering and marine transportation. Our composite analysis shows that the SCS surface wind anomalies are considerably varying with the Madden-Julian Oscillation (MJO) eastward propagation. The SCS summer southwest monsoon tends to be stronger (weaker) in phases 5–8 (1–4) of MJO with the largest positive (negative) wind-speed anomalies when the MJO convection is centered in the western Pacific (far western Indian Ocean), suggesting the highest (lowest) probability of the gale over the SCS. The variation of the western Pacific Subtropical High (WPSH), induced by the variations of the local meridional circulation, is shown to play a crucial role in the MJO-SCS summer monsoon linkage. The SCS winter monsoon is also shown to be modulated by the MJO with strengthened (weakened) surface northeasterly in phases 5–6 (1–2). The extra-tropical East Asian trough and East Asian westerly jet associated with the local meridional circulation can well explain the changes of the MJO-SCS winter monsoon relationship. The opposite responses of the wind direction during the same phases of the MJO between summer and winter may be attributed to the discrepancy of meridional circulation related to the wintertime equatorward shift of the MJO convection. The present study indicates that the MJO could be taken into consideration when applying extended-range weather forecast over the SCS as the predictability of the MJO activity is up to 15–20 day currently.


2020 ◽  
Vol 70 (10) ◽  
pp. 1315-1323
Author(s):  
Xuechao Wang ◽  
Qin-Yan Liu ◽  
Dandan Sui ◽  
Dongxiao Wang

2013 ◽  
Vol 9 (6) ◽  
pp. 2777-2788 ◽  
Author(s):  
M. Yamamoto ◽  
H. Sai ◽  
M.-T. Chen ◽  
M. Zhao

Abstract. The response of the East Asian winter monsoon variability to orbital forcing is still unclear, and hypotheses are controversial. We present a 150 000 yr record of sea surface temperature difference (ΔSST) between the South China Sea and other Western Pacific Warm Pool regions as a proxy for the intensity of the Asian winter monsoon, because the winter cooling of the South China Sea is caused by the cooling of surface water at the northern margin and the southward advection of cooled water due to winter monsoon winds. The ΔSST showed dominant precession cycles during the past 150 000 yr. The ΔSST varies at precessional band and supports the hypothesis that monsoon is regulated by insolation changes at low-latitudes (Kutzbach, 1981), but contradicts previous suggestions based on marine and loess records that eccentricity controls variability on glacial–interglacial timescales. Maximum winter monsoon intensity corresponds to the May perihelion at precessional band, which is not fully consistent with the Kutzbach model of maximum winter monsoon at the June perihelion. Variation in the East Asian winter monsoon was anti-phased with the Indian summer monsoon, suggesting a linkage of dynamics between these two monsoon systems on an orbital timescale.


2014 ◽  
Vol 13 (6) ◽  
pp. 893-900 ◽  
Author(s):  
Zhifeng Wang ◽  
Liangming Zhou ◽  
Sheng Dong ◽  
Lunyu Wu ◽  
Zhanbin Li ◽  
...  

2003 ◽  
Vol 59 (3) ◽  
pp. 285-292 ◽  
Author(s):  
Zicheng Peng ◽  
Tegu Chen ◽  
Baofu Nie ◽  
M. John Head ◽  
Xuexian He ◽  
...  

AbstractWe have used correlative analysis between mean December–January–February winter wind velocities, measured at the Xisha Meteorological Observatory (16°50′N, 112°20′E) in the middle of the South China Sea, and mean δ18O data for the corresponding month from Porites lutea coral, collected in Longwan waters (19°20′N, 110°39′E), to obtain a linear equation relating the two datasets. This winter wind velocity for the South China Sea (WMIIscs) can then be correlated to the coral δ18O by the equation WMIIscs = −1.213–1.351 δ18O (‰ PDB), r = −0.60, n = 40, P = 0.01. From this, the calculated WMIIscs-δ18O series from 1944 to 1997 tends to decrease during the 1940s to the 1960s; it increases slightly during the 1970s and then decreases again in the 1980s and 1990s. The calculated decadal mean WMIIscs-δ18O series had a obvious decrease from 5.92 to 4.63 m/s during the period of 1944–1997. The calculated yearly mean WMIIscs-δ18O value is 5.58 m/s from 1944 to 1976 and this decreases to 4.85 m/s from 1977 to 1998. That is the opposite trend to the observed yearly mean SST variation. The yearly mean SST anomaly is −0.27° from 1943 to 1976 and this increases to +0.16° from 1977 to 1998. Spectral analysis used on a 54-year-long calculated WMIIscs-δ18O series produces spectral peaks at 2.4–7 yr, which can be closely correlated with the quasibiennial oscillation band (QBO band, 2–2.4 yr) and the El Ñino southern oscillation band (ENSO band, 3–8 yr). Hence most of the variability of the winter monsoon intensity in the middle of the South China Sea is mainly constrained by changes in the thermal difference between the land and the adjoining sea area, perhaps due to global warming.


Sign in / Sign up

Export Citation Format

Share Document