scholarly journals A kinematic control algorithm for blasthole drilling robotic arm in tunneling

2017 ◽  
Vol 20 (K5) ◽  
pp. 13-22
Author(s):  
Thai Hong Nguyen ◽  
Thai Quang Nguyen

The most typical method of tunneling in complicated geographical conditions is still blasthole drilling. To improve the efficiency of the work, Vietnam and several other countries have used drilling devices fitted with self-propelled hydraulic seven-link robotic arms which can also be manually controlled to modernize the drilling and blasting processes and improve the accuracy of the work. The task of controlling the robotic arm to automatically drill the holes exactly as specified in the passport of blasting prepared by geotechnical and underground construction engineers requires a control algorithm for the controller of the robot. The matter will be clearly presented in this article.

2015 ◽  
Vol 74 (9) ◽  
Author(s):  
Lee Jun Wei ◽  
Loi Wei Sen ◽  
Zamani Md. Sani

The robotic arm structure and control algorithm are designed for a purpose, to pick and place an object task at underwater which is attached to a ROV (Remotely Operated Underwater Vehicle). It is controlled by an innovated gesture control system, Leap Motion controller. The arm structure of pick and place is controlled by Arduino as microcontroller to control the angles and displacements of the servomotor precisely. The detection of position and orientation of the fingers and hands processed by develop control algorithm in Javascript language and sent to the Arduino. Meanwhile, a detailed 3D drawing is drawn precisely by using SolidWorks for the fabrication. After the platform is completed, kinematic and inverse kinematic equations and calculations are programed into JavaScript language for the control algorithm. Lastly, the hardware and software combined all together. With developed control algorithm, the robotic arm mimics human’s fingers and arm movements which more user friendly interface especially underwater scavenging and salvaging. Since it designed for underwater, the accuracy and precision are crucial for robotic arms, it undergo several experiments and tests for investigate reliability performance of developed robotic arm.   


2015 ◽  
Vol 9 (2) ◽  
pp. 182
Author(s):  
Germán Buitrago Salazar ◽  
Olga Lucía Ramos ◽  
Dario Amaya

Author(s):  
Alicja Mazur ◽  
Dawid Szakiel

On path following control of nonholonomic mobile manipulatorsThis paper describes the problem of designing control laws for path following robots, including two types of nonholonomic mobile manipulators. Due to a cascade structure of the motion equation, a backstepping procedure is used to achieve motion along a desired path. The control algorithm consists of two simultaneously working controllers: the kinematic controller, solving motion constraints, and the dynamic controller, preserving an appropriate coordination between both subsystems of a mobile manipulator, i.e. the mobile platform and the manipulating arm. A description of the nonholonomic subsystem relative to the desired path using the Frenet parametrization is the basis for formulating the path following problem and designing a kinematic control algorithm. In turn, the dynamic control algorithm is a modification of a passivity-based controller. Theoretical deliberations are illustrated with simulations.


2020 ◽  
Vol 17 (5) ◽  
pp. 172988142093854
Author(s):  
Di Wu ◽  
Lichao Hao ◽  
Xiujun Xu ◽  
Hongjian Wang ◽  
Jiajia Zhou

Cooperative tracking control problem of multiple water–land amphibious robots is discussed in this article with consideration of unknown nonlinear dynamics. Firstly, the amphibious robot dynamic model is formulated as an uncoupled nonlinear one in horizontal plane through eliminating relatively small sway velocity of the platform. Then cooperative tracking control algorithm is proposed with a two-stage strategy including dynamic control stage and kinematic control stage. In dynamic control stage, adaptive consensus control algorithm is obtained with estimating nonlinear properties of amphibious robots and velocities of the leader by neural network with unreliable communication links which is always the case in underwater applications. After that, kinematic cooperative controller is presented to guarantee formation stability of multiple water–land amphibious robots system in kinematic control stage. As a result, with the implementation of graph theory and Lyapunov theory, the stability of the formation tracking of multiple water–land amphibious robots system is proved with consideration of jointly connected communication graph. At last, simulations are carried out to prove the effectiveness of the proposed approaches.


Author(s):  
Dharshan Y. ◽  
Vivek S. ◽  
Saranya S. ◽  
Aarthi V.R. ◽  
Madhumathi T.

<div><p><em>Robots have become a key technology in various fields. Robotic arms are mostly remote controlled by buttons or panels and sometimes in batch process they are autonomous. The usage of panel boards or control sticks includes a lot of hardwiring and subject to malfunction.  It also induces some stress on the operators. Hence major chemical industries like cosmetic manufacturing, paint manufacturing and Biosynthesis laboratory etc., which deals with hazardous environment due to the chemicals and other bio substances, involve humans for the processing. The aim is to reduce the bulk of wiring in the robotic arms and reduce the effort and number of operators in controlling the robotic arm operations. To implement gestures into the process this would be a major breakthrough. This can also be used as pick &amp; place robot, a cleaning robot in chemical industries where a human does not need to directly involved in the process of cleaning the chemicals and also for coating underground tanks.</em></p></div>


2013 ◽  
Vol 655-657 ◽  
pp. 1057-1060
Author(s):  
Li Jun Zong ◽  
Guang Kuo Wang ◽  
Xin Li ◽  
Lei Wang ◽  
Xiao Min Zhang ◽  
...  

Aerospace robotic arms have important applications in aerospace engineering (capture satellite, develop the technology of extra-vehicle activity (EVA), etc.) This paper first introduces the development and background of the Aerospace Robotic Arm. In later sections, a kinematics model of a Six-DOF manipulator is built based on DenavitHartenberg(D-H) method, then, the paper discusses an inverse kinematics solving method of the manipulator. At last, we show the simulation by integrating the use of SolidWorks, Matlab, and a number of their modules.


2018 ◽  
Vol 38 (5) ◽  
pp. 568-575 ◽  
Author(s):  
Weilin Yang ◽  
Wentao Zhang ◽  
Dezhi Xu ◽  
Wenxu Yan

Purpose Robotic arm control is challenging due to the intrinsic nonlinearity. Proportional-integral-derivative (PID) controllers prevail in many robotic arm applications. However, it is usually nontrivial to tune the parameters in a PID controller. This paper aims to propose a model-based control strategy of robotic arms. Design/methodology/approach A Takagi–Sugeno (T-S) fuzzy model, which is capable of approximating nonlinear systems, is used to describe the dynamics of a robotic arm. Model predictive control (MPC) based on the T-S fuzzy model is considered, which optimizes system performance with respect to a user-defined cost function. Findings The control gains are optimized online according to the real-time system state. Furthermore, the proposed method takes into account the input constraints. Simulations demonstrate the effectiveness of the fuzzy MPC approach. It is shown that asymptotic stability is achieved for the closed-loop control system. Originality/value The T-S fuzzy model is discussed in the modeling of robotic arm dynamics. Fuzzy MPC is used for robotic arm control, which can optimize the transient performance with respect to a user-defined criteria.


Sign in / Sign up

Export Citation Format

Share Document