Trajectory Optimization and Simulation of Aerospace Robotic Arm

2013 ◽  
Vol 655-657 ◽  
pp. 1057-1060
Author(s):  
Li Jun Zong ◽  
Guang Kuo Wang ◽  
Xin Li ◽  
Lei Wang ◽  
Xiao Min Zhang ◽  
...  

Aerospace robotic arms have important applications in aerospace engineering (capture satellite, develop the technology of extra-vehicle activity (EVA), etc.) This paper first introduces the development and background of the Aerospace Robotic Arm. In later sections, a kinematics model of a Six-DOF manipulator is built based on DenavitHartenberg(D-H) method, then, the paper discusses an inverse kinematics solving method of the manipulator. At last, we show the simulation by integrating the use of SolidWorks, Matlab, and a number of their modules.

Robotica ◽  
2005 ◽  
Vol 23 (1) ◽  
pp. 123-129 ◽  
Author(s):  
John Q. Gan ◽  
Eimei Oyama ◽  
Eric M. Rosales ◽  
Huosheng Hu

For robotic manipulators that are redundant or with high degrees of freedom (dof), an analytical solution to the inverse kinematics is very difficult or impossible. Pioneer 2 robotic arm (P2Arm) is a recently developed and widely used 5-dof manipulator. There is no effective solution to its inverse kinematics to date. This paper presents a first complete analytical solution to the inverse kinematics of the P2Arm, which makes it possible to control the arm to any reachable position in an unstructured environment. The strategies developed in this paper could also be useful for solving the inverse kinematics problem of other types of robotic arms.


Author(s):  
Akhmad Fahruzi ◽  
Bimo Satyo Agomo ◽  
Yulianto Agung Prabowo

Nowadays robotic arm is widely used in various industries, especially those engaged in manufacturing. Robotic arms are usually used to perform jobs such as picking up and moving goods from their place of origin to the location desired by the operator. In this study, a 3d 4 DOF (Degree of Freedom) robotic arm. The prototype was made to move goods with random coordinates to places or boxes whose coordinates were determined in advance. The robot can know the coordinates of the object to be taken or moved. The arm robot prototype design is completed with a camera connected to a computer, where the camera is installed statically (fixed position) above the robot's work area. The camera functions like image processing to detect the object's position by taking the coordinates of the object. Then the object coordinates will be input into inverse kinematics that will produce an angle in every point of the servo arm so that the position of the end effector on the robot arm can be founded and reach the intended object. From the results of testing and analysis, it was found that the error in the webcam test to detect object coordinates was 2.58%, the error in the servo motion test was 12.68%, and the error in the inverse kinematics test was 7.85% on the x-axis, the error was 6.31% on the y-axis and an error of 12.77% on the z-axis. The reliability of the whole system is 66.66%.


In this paper, the analysis and modeling of six joint axes of a robotic arm having three DOF spherical arm and three DOF spherical wrist have been done to solve the kinematics and inverse kinematics. Kinematics provides the rational explication of a robotic manipulator. For the analysis of industrial robotics manipulator a particular type of kinematics model is required. The Denavit Hartenberg criterion has been used to solve the kinematics equations. MATLAB, Firefly Algorithm (FFA) and Roboanalyzer have been used to get the home position and differences in error at different values of six-DOF manipulator. Error can be optimized to as low as 10-17with the firefly algorithm.


2022 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Riza Sulaiman ◽  
Wan Azlan Wan Hassan ◽  
Muhammad Fairuz Abd. Rauf ◽  
Zuraidy Adnan ◽  
Raja Mohd. Tariqi Raja Lope Ahmad ◽  
...  

2013 ◽  
Vol 273 ◽  
pp. 119-123
Author(s):  
Ding Jin Huang ◽  
Teng Liu

The use of traditional analytical method for manipulator inverse kinematics is able to get a display solution with the limitations of the application, only when the robotic arm has a specific structure. In view of the insufficient, this paper presents an improved artificial potential field method to solve the inverse kinematics problem of the manipulator which does not have a special structure. Firstly, establish the standard DH model for the robot arm. Then the strategy that improves search space of artificial potential field method and motion control standard is presented by combining artificial potential field method with the manipulator. Finally, the simulation results show that the proposed method is effective.


2001 ◽  
Vol 38-40 ◽  
pp. 797-805 ◽  
Author(s):  
Eimei Oyama ◽  
Arvin Agah ◽  
Karl F. MacDorman ◽  
Taro Maeda ◽  
Susumu Tachi

Sign in / Sign up

Export Citation Format

Share Document