scholarly journals Extracting and determining components in the carotenoids colorant from pumpkin (Cucurpita pepo)

Author(s):  
Anh Phan ◽  
Nhan Thi Hong Le

In this paper, the extraction of carotenoids colorants from three types of pumpkin (Vam Rang (C. maxima), ho lo (C. moschata) and Japan pumpkin (Delica)) were investigated to scale up. With suitable conditions, the pumpkin powder should be extracted with alcohol 96o with a solvent / material ratio of 12/1 mL/g at 50°C for 60 minutes. The content of carotenoids (7,5- 8 mg/mL) and the extraction efficiency of the color extract (88,37 mg/g) of ho lo pumpkin was the highest. The carotenoid concentration and extraction efficiency were determined by UV/Visible spectroscopy (432, 444 and 468 nm), and high performance liquid chromatography (the mobile phase condition isopropanol/MeOH:2/98, 450 nm. The results of the two methods were also suitable for each other. The results showed that the complex carotenoids were composition of 3 types compounds. In addition, more research is needed to enhance the durability of carotenoids.

2018 ◽  
Vol 10 (1) ◽  
pp. 248
Author(s):  
Baitha Palanggatan Maggadani ◽  
Harmita . ◽  
Maizura Isfadhila

Objective: The aim of this study was to produce a selective, accurate, and faster high-performance liquid chromatography (HPLC) analytical methodfor benzalkonium chloride and glutaraldehyde in disinfectants using ultraviolet (UV)-visible detection.Methods: Glutaraldehyde has no chromophore, so it was first derivatized using 2,4 dinitro phenylhydrazine. Acetonitrile:water (75:25) was used asthe mobile phase for glutaraldehyde and acetonitrile-acetate pH 4 (75:25) for benzalkonium chloride, both at a flow rate of 1.2 mL/min. The optimizedassay was validated with respect to accuracy, precision, linearity, selectivity, limit of quantitation (LOQ), and limit of detection (LOD).Results: The method was linear for benzalkonium chloride, with correlation coefficient of 0.9995, LOD of 14.55 ppm, and LOQ of 48.51 ppm. Thecorrelation coefficient for glutaraldehyde was 0.9995, with LOD of 0.49 ppm and LOQ of 1.64 ppm. Accuracy was between 98% and 102%, andprecision was below 2% for both the tests.Conclusion: The HPLC analytical method for benzalkonium chloride and glutaraldehyde in disinfectants using UV-visible detection in this researchwas successful to produce a selective, accurate, and faster method.


2019 ◽  
Vol 886 ◽  
pp. 40-45
Author(s):  
Nararat Thongsrinoon ◽  
Netnapha Phiwdee ◽  
Yanada Duangsa ◽  
Khaengkhae Muensub ◽  
Vichayaporn Duang-Iad

Benzoic acid analysis in curry paste samples were carried out by using high performance liquid chromatography using ultrasonic extraction. Methanol-0.05 M ammonium acetate buffer pH 4.40 in the ratio of 55:45 (%v/v) at a flow rate of 1.00 mL/min was used as the mobile phase and benzoic acid detection was performed at 226 nm using an UV-Visible detector. Under the optimum conditions, linearity of spiked samples ranged from 50 to 3,000 mg/kg. Matrix matched calibrations had determined that benzoic acid contents in southern sour, red, and green curry paste samples were 67.59, 78.62 and 72.33 mg/kg, respectively. Recoveries were obtained from 89.34 to 101.70%, 83.37 to 130.30% and 92.75 to 113.56% with R.S.D. ranged from 2.71 to 6.53%, 4.02 to 11.58% and 5.81 to 6.35%, for southern sour, red, and green curry paste samples, respectively.


2019 ◽  
Vol 16 ◽  
Author(s):  
Joanna Wittckind Manoel ◽  
Camila Ferrazza Alves Giordani ◽  
Livia Maronesi Bueno ◽  
Sarah Chagas Campanharo ◽  
Elfrides Eva Sherman Schapoval ◽  
...  

Introduction: Impurity analysis is an important step in the quality control of pharmaceutical ingredients and final product. Impurities can arise from drug synthesis or excipients and even at small concentrations may affect product efficacy and safety. In this work two methods using high performance liquid chromatography (HPLC) were developed and validated for the evaluation of besifloxacin and its impurity synthesis, with isocratic elution and another with gradient elution. Method: The analysis by HPLC in isocratic elution mode was performed using a cyano column maintained at 25 °C. The mobile phase was composed by 0.5% triethylamine (pH 3.0): acetonitrile (88:12 v/v) eluted at a flow rate of 1.0 ml/min with detection at 330 nm. The gradient elution method was carried out with the same column and mobile phase components only modifying the rate between organic and aqueous phase during analysis. The procedures have been validated according to internationally accepted guidelines, observing results within acceptable limits. Results: The methods presented were found to be linear in the 140 to 260 µg/ml range for besifloxacin and 0.3 to 2.3 µg/ml for an impurity named A. The limits of detection and quantification were respectively 0.07 and 0.3 µg/ml for impurity A, with a 20 µL injection volume. The precision achieved for all analyses performed provided RSD inter-day equal to 6.47 and 6.36% for impurity A with isocratic elution and gradient, respectively. The accuracy was higher than 99% and robustness exhibited satisfactory results. In the isocratic method an analysis time of 25 min and 15 min was obtained for gradient. For impurity A, the number of theoretical plates in the isocratic mode was about 5000 while in the gradient mode it was about 45000, hence, it made the column more efficient by changing the mobile phase composition during elution. In besifloxacin raw material and in pharmaceutical product used in this study, other related impurities were present but but impurity A was searched for and not detected Conclusion: The proposed methods can be applied for quantitative determination of impurities in the analysis of the besifloxacin raw material, as well as in ophthalmic suspension of the drug, considering the quantitation limit.


1994 ◽  
Vol 59 (3) ◽  
pp. 569-574 ◽  
Author(s):  
Josef Královský ◽  
Marta Kalhousová ◽  
Petr Šlosar

The reversed-phase high-performance liquid chromatography of some selected, industrially important aromatic sulfones has been investigated. The chromatographic behaviour of three groups of aromatic sulfones has been studied. The optimum conditions of separation and UV spectra of the sulfones and some of their hydroxy and benzyloxy derivatives are presented. The dependences of capacity factors vs methanol content in mobile phase are mentioned. The results obtained have been applied to the quantitative analysis of different technical-grade samples and isomer mixtures. For all the separation methods mentioned the concentration ranges of linear calibration curves have been determined.


1977 ◽  
Vol 23 (12) ◽  
pp. 2288-2291 ◽  
Author(s):  
P H Culbreth ◽  
I W Duncan ◽  
C A Burtis

Abstract We used paired-ion high-performance liquid chromatography to determine the 4-nitrophenol content of 4-nitrophenyl phosphate, a substrate for alkaline phosphatase analysis. This was done on a reversed-phase column with a mobile phase of methanol/water, 45/55 by vol, containing 3 ml of tetrabutylammonium phosphate reagent per 200 ml of solvent. At a flow rate of 1 ml/min, 4-nitrophenol was eluted at 9 min and monitored at 404 nm; 4-nitrophenyl phosphate was eluted at 5 min and could be monitored at 311 nm. Samples of 4-nitrophenyl phosphate obtained from several sources contained 0.3 to 7.8 mole of 4-nitrophenol per mole of 4-nitrophenyl phosphate.


2011 ◽  
Vol 8 (1) ◽  
pp. 340-346 ◽  
Author(s):  
Rajesh M. Kashid ◽  
Santosh G. Singh ◽  
Shrawan Singh

A reversed phase HPLC method that allows the separation and simultaneous determination of the preservatives methyl paraben (M.P.) and propyl paraben (P.P.) is described. The separations were effected by using an initial mobile phase of water: acetonitrile (50:50) on Inertsil C18 to elute P.P. and M.P. The detector wavelength was set at 205 nm. Under these conditions, separation of the two components was achieved in less than 10 min. Analytical characteristics of the separation such as precision, specificity, linear range and reproducibility were evaluated. The developed method was applied for the determination of preservative M.P. and P.P. at concentration of 0.01 mg/mL and 0.1 mg/mL respectively. The method was successfully used for determining both compounds in sucralfate suspension.


2021 ◽  
Vol 66 (3) ◽  
pp. 172-176
Author(s):  
Lyubov Borisovna Kalikova ◽  
E. R. Boyko

Adenine nucleotides (ATP, ADP and AMP) play a central role in the regulation of metabolism and energy: they provide the energy balance of the cell, determine its redox state, act as allosteric effectors of a number of enzymes, modulate signaling and transcription factors and activate oxidation or biosynthesis substrates. A large number of methods have been developed to determine the level of ATP, ADP and AMP, but the most universal and effective method for the separation and analysis of complex mixtures is the reversed-phase high-performance liquid chromatography method (RP-HPLC). The aim of this study is to determine the optimal conditions for the qualitative separation and quantitative determination of standard solutions of ATP (1 mmol/l), ADP (0,5 mmol/l) and AMP (0,1 mmol/l) by RP-HPLC. The degree of separation of adenine nucleotides was estimated by the time of peak output in the chromatogram. To achieve the goal, the following tasks were set: assess the effect of the temperature of the analysis on the separation and change of the release time of the analytes in the chromatogram; determine the most optimal composition of the mobile phase for the separation of ATP, ADP and AMP in the chromatogram (the content of the organic solvent in the solution); to identify the effect of pH of the mobile phase on the separation of standard solutions of adenine nucleotides; set the optimal molarity of the mobile phase for the separation of ATP, ADP and AMP in the chromatogram. It was found that the temperature of the analysis does not affect the quality of peak separation, while the composition and pH of the mobile phase have a significant effect on the complete and clear separation of the studied nucleotides in the chromatogram. It was determined that the analysis temperature of 37°C and the mobile phase of 0.05 M KH2PO4 (pH 6.0) are optimal for separating the peaks of adenine nucleotides.


Sign in / Sign up

Export Citation Format

Share Document