A Hybrid Model is Proposed Based in The Combination of Genetic and MAFS in Cloud Environment

Author(s):  
V. Chinnasamy ◽  
D. Maruthanayagam

Cloud computing is being heralded as an important trend in information technology throughout the world. Data security has a major issue in cloud computing environment; An intrusion detection system (IDS) is a component that helps to detect various types of malicious network traffic which cannot be detected by a conventional firewall. Many IDS have been developed based on machine learning techniques. In recent growth, advanced detection approaches created by combining or integrating multiple learning techniques have shown better detection performance than general single learning technique. The feature representation method is an important pattern classifier that facilitates correct classifications, however, there have been very few related studies focusing how to extractor representative features for normal connections and effective detection of attacks. The objective of this paper is to suggest new security mechanisms using various trust approaches in broker based federated cloud architecture, ranking the providers with the help of regression tree approach using Service Measurement Index security attributes and new hybrid computation intelligence built on the combination of genetic with Artificial Fish Swarm in Intrusion Detection system.

2020 ◽  
pp. 1042-1059 ◽  
Author(s):  
Ammar Almomani ◽  
Mohammad Alauthman ◽  
Firas Albalas ◽  
O. Dorgham ◽  
Atef Obeidat

This article describes how as network traffic grows, attacks on traffic become more complicated and harder to detect. Recently, researchers have begun to explore machine learning techniques with cloud computing technologies to classify network threats. So, new and creative ways are needed to enhance intrusion detection system. This article addresses the source of the above issues through detecting an intrusion in cloud computing before it further disrupts normal network operations, because the complexity of malicious attack techniques have evolved from traditional malicious attack technologies (direct malicious attack), which include different malicious attack classes, such as DoS, Probe, R2L, and U2R malicious attacks, especially the zero-day attack in online mode. The proposed online intrusion detection cloud system (OIDCS) adopts the principles of the new spiking neural network architecture called NeuCube algorithm. It is proposed that this system is the first filtering system approach that utilizes the NeuCube algorithm. The OIDCS inherits the hybrid (supervised/unsupervised) learning feature of the NeuCube algorithm and uses this algorithm in an online system with lifelong learning to classify input while learning the system. The system is accurate, especially when working with a zero-day attack, reaching approximately 97% accuracy based on the to-be-remembered (TBR) encoding algorithm.


2018 ◽  
Vol 8 (2) ◽  
pp. 96-112 ◽  
Author(s):  
Ammar Almomani ◽  
Mohammad Alauthman ◽  
Firas Albalas ◽  
O. Dorgham ◽  
Atef Obeidat

This article describes how as network traffic grows, attacks on traffic become more complicated and harder to detect. Recently, researchers have begun to explore machine learning techniques with cloud computing technologies to classify network threats. So, new and creative ways are needed to enhance intrusion detection system. This article addresses the source of the above issues through detecting an intrusion in cloud computing before it further disrupts normal network operations, because the complexity of malicious attack techniques have evolved from traditional malicious attack technologies (direct malicious attack), which include different malicious attack classes, such as DoS, Probe, R2L, and U2R malicious attacks, especially the zero-day attack in online mode. The proposed online intrusion detection cloud system (OIDCS) adopts the principles of the new spiking neural network architecture called NeuCube algorithm. It is proposed that this system is the first filtering system approach that utilizes the NeuCube algorithm. The OIDCS inherits the hybrid (supervised/unsupervised) learning feature of the NeuCube algorithm and uses this algorithm in an online system with lifelong learning to classify input while learning the system. The system is accurate, especially when working with a zero-day attack, reaching approximately 97% accuracy based on the to-be-remembered (TBR) encoding algorithm.


2015 ◽  
Vol 713-715 ◽  
pp. 2499-2502
Author(s):  
Jiang Kun Mao ◽  
Fan Zhan

Intrusion detection system as a proactive network security technology, is necessary and reasonable to add a static defense. However, the traditional exceptions and errors detecting exist issues of leakage police, the false alarm rate or maintenance difficult. In this paper, The intrusion detection system based on data mining with statistics, machine learning techniques in the detection performance, robustness, self-adaptability has a great advantage. The system improves the K-means clustering algorithm, focus on solving two questions of the cluster center node selection and discriminating of clustering properties, the test shows that the system further enhance the detection efficiency of the system.


Author(s):  
N. Ravi ◽  
G. Ramachandran

Recent advancement in technologies such as Cloud, Internet of Things etc., leads to the increase usage of mobile computing. Present day mobile computing are too sophisticated and advancement are reaching great heights. Moreover, the present day mobile network suffers due to external and internal intrusions within and outside networks. The existing security systems to protect the mobile networks are incapable to detect the recent attacks. Further, the existing security system completely depends on the traditional signature and rule based approaches. Recent attacks have the property of not fluctuating its behaviour during attack. Hence, a robust Intrusion Detection System (IDS) is desirable. In order to address the above mentioned issue, this paper proposed a robust IDS using Machine Learning Techniques (MLT). The key of using MLT is to utilize the power of ensembles. The ensembles of classifier used in this paper are Random Forest (RF), KNN, Naïve Bayes (NB), etc. The proposed IDS is experimentally tested and validated using a secure test bed. The experimental results also confirms that the proposed IDS is robust enough to withstand and detect any form of intrusions and it is also noted that the proposed IDS outperforms the state of the art IDS with more than 95% accuracy.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Abhijit Dnyaneshwar Jadhav ◽  
Vidyullatha Pellakuri

AbstractNetwork security and data security are the biggest concerns now a days. Every organization decides their future business process based on the past and day to day transactional data. This data may consist of consumer’s confidential data, which needs to be kept secure. Also, the network connections when established with the external communication devices or entities, a care should be taken to authenticate these and block the unwanted access. This consists of identification of the malicious connection nodes and identification of normal connection nodes. For that, we use a continuous monitoring of the network input traffic to recognize the malicious connection request called as intrusion and this type of monitoring system is called as an Intrusion detection system (IDS). IDS helps us to protect our network and data from insecure and malicious network connections. Many such systems exists in the real time scenario, but they have critical issues of performance like accuracy and efficiency. These issues are addressed as a part of this research work of IDS using machine learning techniques and HDFS. The TP-IDS is designed in two phases for increasing accuracy. In phase I of TP-IDS, Support Vector Machine (SVM) and k Nearest Neighbor (kNN) are used. In phase II of TP-IDS, Decision Tree (DT) and Naïve Bayes (NB) are used, where phase II is the validation phase of the system for increasing accuracy. Also, both the phases are having Hadoop distributed file system underlying data storage and processing architecture, which allows parallel processing to increase the speed of the system and hence achieve the efficiency in TP-IDS.


Sign in / Sign up

Export Citation Format

Share Document