scholarly journals Rotating Disc Apparatus and its application to estimate sediment erosion in Hydro turbines

Author(s):  
Oblique Shrestha ◽  
Hari Prasad Neopane ◽  
BholaThapa ◽  
Young-Ho Lee ◽  
Aman Kapali

The removal of surface material due to repeated impacts of sediment is known as sediment erosion. This prominent phenomenon is found to exist on a run of the river types of hydro projects where the hydro turbines are exposed to sediment particles. It has drawn the attention of researchers, academic institutions, and hydropower developers to conduct research on this issue. Investigation of the problem at the site may require sophisticated equipment and sensors- set up for quantitative measurements. This process is time consuming and difficult as it is difficult to access the erosion location. Laboratory setup can be a solution to study and investigate erosion behaviour in well-controlled laboratory conditions. Among several erosion testing apparatuses, Rotating Disc Apparatus (RDA) has been used for the investigation of erosion as well as cavitation of hydro components, and to study the erosion resistivity of different materials. This device mainly consists of a rotating disc and an electric motor, which is used to rotate a disc-holding specimen. This paper evaluates the RDA for its applicability in simulating the flow on the surfaces of the components of the hydro turbines as that occurs in actual hydro power plants. The outcomes from the present study indicated that RDA produces promising erosion results and can simulate the wear conditions.

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3201
Author(s):  
Henry Bory ◽  
Jose L. Martin ◽  
Iñigo Martinez de Alegria ◽  
Luis Vazquez

Micro-hydro power plants (μHPPs) are a major energy source in grid-isolated zones because they do not require reservoirs and dams to be built. μHPPs operate in a standalone mode, but a continuously varying load generates voltage unbalances and frequency fluctuations which can cause long-term damage to plant components. One method of frequency regulation is the use of alternating current-alternating current (AC-AC) converters as an electronic load controller (ELC). The disadvantage of AC-AC converters is reactive power consumption with the associated decrease in both the power factor and the capacity of the alternator to deliver current. To avoid this disadvantage, we proposed two rectifier topologies combined with symmetrical switching. However, the performance of the frequency regulation loop with each topology remains unknown. Therefore, the objective of this work was to evaluate the performance of the frequency regulation loop when each topology, with a symmetrical switching form, was inserted. A MATLAB® model was implemented to simulate the frequency loop. The results from a μHPP case study in a small Cuban rural community called ‘Los Gallegos’ showed that the performance of the frequency regulation loop using the proposed topologies satisfied the standard frequency regulation and increased both the power factor and current delivery capabilities of the alternator.


2018 ◽  
Vol 73 ◽  
pp. 01017
Author(s):  
Ignatius Sriyana

Land degradation on the upstream of watershed will affect hydrology condition in a way that it will disrupt the sustainability of its existing micro hydro. The purpose of this study is to evaluate micro hydro power plant in central Java toward sustainability against hydrology condition of watershed. This study is using River Regime Coefficient (RRC) approach where hydrology of watershed with coefficient value less than 50 is classified as non-critical, between 50 and 120 is moderate and more than 120 is critical. Result of the study that was done on 33 micro hydro power plants scattered on 9 watersheds is showing that there are 2 power plants on 2 watersheds have hydrology condition in non-critical status (9.09%), 1 power plant on 1 watershed is in between critical and non-critical status (3.03%), 21 power plants on 3 watersheds are in between critical and moderate status (63.64%), 8 power plants on 6 watersheds are in critical status (21.21%) and 1 power plant on 1 watershed is in between moderate and critical status (3.03%).


2015 ◽  
Vol 806 ◽  
pp. 64-73
Author(s):  
Aleksandar Vujović ◽  
Zdravko Krivokapić ◽  
Jelena Jovanović

The paper is a result of research at the Mechanical Engineering Faculty in Podgorica and represents the aspiration of authors to combine scientific and technical experience in order to achieve improvement in a real system. It is a complex system of lock chambers in a hydroelectric power plant. Based on a detailed analysis of the initial state, through the process modeling of complex real system, the authors identify possible areas where the intervening and applying modern systems with greater flexibility is necessary to achieve higher levels of automation. Also, proposed in the paper are measures for ensuring the security of information that rise system performance to a higher level compared to the competition and create an advantage in the global market.


Sign in / Sign up

Export Citation Format

Share Document