scholarly journals Modelling of grain structure using cellular automata-finite element method for additive manufacturing of metals

2021 ◽  
Author(s):  
◽  
Joel Heang Kuan Tan
Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2568 ◽  
Author(s):  
Jinqiang Ning ◽  
Daniel E. Sievers ◽  
Hamid Garmestani ◽  
Steven Y. Liang

Metal additive manufacturing can produce geometrically complex parts with effective cost. The high thermal gradients due to the repeatedly rapid heat and solidification cause defects in the produced parts, such as cracks, porosity, undesired residual stress, and part distortion. Different techniques were employed for temperature investigation. Experimental measurement and finite element method-based numerical models are limited by the restricted accessibility and expensive computational cost, respectively. The available physics-based analytical model has promising short computational efficiency without resorting to finite element method or any iteration-based simulations. However, the heat transfer boundary condition cannot be considered without the involvement of finite element method or iteration-based simulations, which significantly reduces the computational efficiency, and thus the usefulness of the developed model. This work presents an explicit and closed-form solution, namely heat sink solution, to consider the heat transfer boundary condition. The heat sink solution was developed from the moving point heat source solution based on heat transfer of convection and radiation. The part boundary is mathematically discretized into many heats sinks due to the non-uniform temperature distribution, which causes non-uniform heat loss. The temperature profiles, thermal gradients, and temperature-affected material properties are calculated and presented. Good agreements were observed upon validation against experimental molten pool measurements.


2013 ◽  
Vol 871 ◽  
pp. 263-268 ◽  
Author(s):  
Łukasz Łach ◽  
Dmytro Svyetlichnyy

The material properties are strongly depended on the microstructure. Recently, for modeling and prediction of microstructure evolution during the forming processes a cellular automata method is used. Combination of several methods in multiscale model allows to extend the possibilities of each method and obtain more reliable results, which are close to the real conditions. The objective of this study is development of multiscale model of microstructure evolution during the shape rolling process and use it for simulation of rolling of 5 mm round bars. Model uses for calculations the finite element (FEM) and cellular automata (CA) methods. Modeling consists of three stages: design of the shape rolling schedule with the definition of shape and sizes of grooves (FEM simulation of each pass, starting from the last pass), FEM modeling of shape rolling in the proper sequence of the passes, modeling of microstructure evolution by frontal cellular automata (FCA). Stages (especially the last two) can be repeated several times to optimize the technology in view of final microstructure. The paper presents the first stage of modeling, which includes design and selection of grooves scheme with used the finite element method. The last six passes were modeled. The rolling scheme obtained from the modeling in the next stage is simulated by FEM to obtain thermomechanical parameters of the process. Then, temperature, strain and strain rate distributions in bar cross-sections, rolling time and inter-pass time will be used as input data for modeling by FCA.


Sign in / Sign up

Export Citation Format

Share Document