scholarly journals Analytical Thermal Modeling of Metal Additive Manufacturing by Heat Sink Solution

Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2568 ◽  
Author(s):  
Jinqiang Ning ◽  
Daniel E. Sievers ◽  
Hamid Garmestani ◽  
Steven Y. Liang

Metal additive manufacturing can produce geometrically complex parts with effective cost. The high thermal gradients due to the repeatedly rapid heat and solidification cause defects in the produced parts, such as cracks, porosity, undesired residual stress, and part distortion. Different techniques were employed for temperature investigation. Experimental measurement and finite element method-based numerical models are limited by the restricted accessibility and expensive computational cost, respectively. The available physics-based analytical model has promising short computational efficiency without resorting to finite element method or any iteration-based simulations. However, the heat transfer boundary condition cannot be considered without the involvement of finite element method or iteration-based simulations, which significantly reduces the computational efficiency, and thus the usefulness of the developed model. This work presents an explicit and closed-form solution, namely heat sink solution, to consider the heat transfer boundary condition. The heat sink solution was developed from the moving point heat source solution based on heat transfer of convection and radiation. The part boundary is mathematically discretized into many heats sinks due to the non-uniform temperature distribution, which causes non-uniform heat loss. The temperature profiles, thermal gradients, and temperature-affected material properties are calculated and presented. Good agreements were observed upon validation against experimental molten pool measurements.

2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Wei An ◽  
Tong Zhu ◽  
NaiPing Gao

A high reflectivity of walls often leads to prohibitive computation time in the numerical simulation of radiative heat transfer. Such problem becomes very serious in many practical applications, for example, metal processing in high-temperature environment. The present work proposes a modified diffusion synthetic acceleration model to improve the convergence of radiative transfer calculation in participating media with diffusely reflecting boundary. This model adopts the P1 diffusion approximation to rectify the scattering source term of radiative transfer equation and the reflection term of the boundary condition. The corrected formulation for boundary condition is deduced and the algorithm is realized by finite element method. The accuracy of present model is verified by comparing the results with those of Monte Carlo method and finite element method without any accelerative technique. The effects of emissivity of walls and optical thickness on the convergence are investigated. The results indicate that the accuracy of present model is reliable and its accelerative effect is more obvious for the optically thick and scattering dominated media with intensive diffusely reflecting walls.


1994 ◽  
Vol 02 (04) ◽  
pp. 371-422 ◽  
Author(s):  
E. PADOVANI ◽  
E. PRIOLO ◽  
G. SERIANI

The finite element method (FEM) is a numerical technique well suited to solving problems of elastic wave propagation in complex geometries and heterogeneous media. The main advantages are that very irregular grids can be used, free surface boundary conditions can be easily taken into account, a good reconstruction is possible of irregular surface topography, and complex geometries, such as curved, dipping and rough interfaces, intrusions, cusps, and holes can be defined. The main drawbacks of the classical approach are the need for a large amount of memory, low computational efficiency, and the possible appearance of spurious effects. In this paper we describe some experience in improving the computational efficiency of a finite element code based on a global approach, and used for seismic modeling in geophysical oil exploration. Results from the use of different methods and models run on a mini-superworkstation APOLLO DN10000 are reported and compared. With Chebyshev spectral elements, great accuracy can be reached with almost no numerical artifacts. Static condensation of the spectral element's internal nodes dramatically reduces memory requirements and CPU time. Time integration performed with the classical implicit Newmark scheme is very accurate but not very efficient. Due to the high sparsity of the matrices, the use of compressed storage is shown to greatly reduce not only memory requirements but also computing time. The operation which most affects the performance is the matrix-by-vector product; an effective programming of this subroutine for the storage technique used is decisive. The conjugate gradient method preconditioned by incomplete Cholesky factorization provides, in general, a good compromise between efficiency and memory requirements. Spectral elements greatly increase its efficiency, since the number of iterations is reduced. The most efficient and accurate method is a hybrid iterative-direct solution of the linear system arising from the static condensation of high order elements. The size of 2D models that can be handled in a reasonable time on this kind of computer is nowadays hardly sufficient, and significant 3D modeling is completely unfeasible. However the introduction of new FEM algorithms coupled with the use of new computer architectures is encouraging for the future.


2007 ◽  
Vol 340-341 ◽  
pp. 737-742
Author(s):  
Yong Ming Guo

In this paper, single action die and double action die hot forging problems are analyzed by a combined FEM, which consists of the volumetrically elastic and deviatorically rigid-plastic FEM and the heat transfer FEM. The volumetrically elastic and deviatorically rigid-plastic FEM has some merits in comparison with the conventional rigid-plastic FEMs. Differences of calculated results for the two forging processes can be clearly seen in this paper. It is also verified that these calculated results are similar to those of the conventional rigid-plastic FEM in comparison with analyses of the same numerical examples by the penalty rigid-plastic FEM.


Author(s):  
Shiro Kobayashi ◽  
Soo-Ik Oh ◽  
Taylan Altan

The concept of the finite-element procedure may be dated back to 1943 when Courant approximated the warping function linearly in each of an assemblage of triangular elements to the St. Venant torsion problem and proceeded to formulate the problem using the principle of minimum potential energy. Similar ideas were used later by several investigators to obtain the approximate solutions to certain boundary-value problems. It was Clough who first introduced the term “finite elements” in the study of plane elasticity problems. The equivalence of this method with the well-known Ritz method was established at a later date, which made it possible to extend the applications to a broad spectrum of problems for which a variational formulation is possible. Since then numerous studies have been reported on the theory and applications of the finite-element method. In this and next chapters the finite-element formulations necessary for the deformation analysis of metal-forming processes are presented. For hot forming processes, heat transfer analysis should also be carried out as well as deformation analysis. Discretization for temperature calculations and coupling of heat transfer and deformation are discussed in Chap. 12. More detailed descriptions of the method in general and the solution techniques can be found in References [3-5], in addition to the books on the finite-element method listed in Chap. 1. The path to the solution of a problem formulated in finite-element form is described in Chap. 1 (Section 1.2). Discretization of a problem consists of the following steps: (1) describing the element, (2) setting up the element equation, and (3) assembling the element equations. Numerical analysis techniques are then applied for obtaining the solution of the global equations. The basis of the element equations and the assembling into global equations is derived in Chap. 5. The solution satisfying eq. (5.20) is obtained from the admissible velocity fields that are constructed by introducing the shape function in such a way that a continuous velocity field over each element can be denned uniquely in terms of velocities of associated nodal points.


Sign in / Sign up

Export Citation Format

Share Document