scholarly journals First-principles calculations of the novel properties of two-dimensional materials

2014 ◽  
Author(s):  
Jiaxu Yan
Author(s):  
Huabing Shu

Semiconducting two-dimensional Janus materials have drawn increasing attention for the novel optoelectronic properties. Here, employing first-principles calculations, we systematically explore the stability, electronic and optical properties of Janus diamane C4FCl....


Author(s):  
Qingwen Lan ◽  
Changpeng Chen

Two-dimensional ferroelastic materials and two-dimensional materials with negative Poisson’s ratios have attracted great interest. Here, using first-principles calculations, we reveal the materials—monolayer YbX (X=S, Se, Te) that harbors both ferroelasticity...


2016 ◽  
Vol 45 (8) ◽  
pp. 3244-3246 ◽  
Author(s):  
Keisuke Takahashi ◽  
Lauren Takahashi

Hydrophobic and antioxidant effects of two dimensional materials Sn, SnSb, InSb, and InSn are investigated with the implementation of first principles calculations.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Kurt Irvin M. Rojas ◽  
Nguyen Thanh Cuong ◽  
Hiroaki Nishino ◽  
Ryota Ishibiki ◽  
Shin-ichi Ito ◽  
...  

AbstractBoron-based two-dimensional materials are of interest for use in electronic devices and catalytic applications, for which it is important that they are chemically stable. Here, we explore the chemical stability of hydrogen boride nanosheets in water. Experiments reveal that mixing hydrogen boride and water produces negligible amounts of hydrogen, suggesting that hydrolysis does not occur and that hydrogen boride is stable in water, which is in contrast to most boron hydride materials. First-principles calculations reveal that the sheets interact weakly with water even in the presence of defects and that negatively charged boron prevents the onset of hydrolysis. We conclude that the charge state of boron and the covalent boron-boron bond network are responsible for the chemical and structural stability. On the other hand, we found that proton exchange with hydrogen boride nanosheets does occur in water, indicating that they become acidic in the presence of water.


2013 ◽  
Vol 744 ◽  
pp. 345-348 ◽  
Author(s):  
Er Jun Kan ◽  
Ming Li

Ordered spin structure in two-dimensional materials is critical to the use of such materials in spintronics. Here, based on first-principles calculations, we demonstrated the existence of magnetic homogeneity in integrated two-dimensional structures. Our calculations show that hydrogenated MoS2 can be magnetized with a ferromagnetic character. The doped electrons in 4d orbitals of Mo atoms through hydrogenation lead to strong exchange splitting, which is the mechanism behind the transition of magnetic states. Given the recent progress in chemical control of two-dimensional materials, our results open a new way to produce two-dimensional spintronics.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Ning Zhao ◽  
Udo Schwingenschlögl

AbstractUtilizing a two-dimensional material in an electronic device as channel layer inevitably involves the formation of contacts with metallic electrodes. As these contacts can dramatically affect the behavior of the device, we study the electronic properties of monolayer Janus MoSSe in contact with different metallic electrodes by first-principles calculations, focusing on the differences in the characteristics of contacts with the two sides of MoSSe. In particular, we demonstrate that the Fermi level pinning is different for the two sides of MoSSe, with the magnitude resembling that of MoS2 or MoSe2, while both sides can form Ohmic contacts with common electrode materials without any further adaptation, which is an outstanding advantage over MoS2 and MoSe2.


Sign in / Sign up

Export Citation Format

Share Document