scholarly journals Application of Packed-nanofibers Solid-phase Extraction for Determination of Rhodamine B in Sausage

2019 ◽  
Vol 8 (1) ◽  
pp. 17-21
Author(s):  
Lanlan Wei ◽  
Jianjun Deng ◽  
Tao Kang ◽  
Xuejun Kang

A method for the determination of Rhodamine B in sausage was developed and validated. After extraction of Rhodamine B with acetonitrile from foodstuffs, a novel electrospun polymer nanofibers packed micro-column was used for cleaning and concentrating of the analyte in the sample. High performance liquid chromatography with fluorescence detection (HPLC-Flu) was used for the determination of Rhodamine B in the sample. The mobile phase was composed of 3.0 g L-1 phosphate buffer and methanol (3:7, volume ratio), and the pH was adjusted to 7. 0 with orthophosphoric acid. The results showed that the standard curve was linear over the validated concentrations range of 2-500 ng g-1, and the limit of detection (LOD) and the limit of quantitation (LOQ) for Rhodamine B spiked samples was 0. 2 ng g-1 and 0. 7 ng g-1, respectively. The average recoveries of Rhodamine B were 90.4% -94.3% for sausage, and the relative standard deviation of the method was from 1.7% to 3.8%. This proposed method was applied to real sample, and there was no Rhodamine B found in sausage.

2017 ◽  
Vol 9 (2) ◽  
pp. 34
Author(s):  
N. Balaji ◽  
Sayeeda Sultana

Objective: An efficient, high performance liquid chromatographic method has been developed and validated for the quantification of related substances in pioglitazone hydrochloride drug substance.Methods: This method includes the determination of three related substances in pioglitazone hydrochloride. The mobile phase A is 0.1% w/v triethylamine in water with pH 2.5 adjusted by dilute phosphoric acid. The mobile phase B is premixed and degassed mixtures of acetonitrile and methanol. The flow rate was 1 ml/min. The elution used was gradient mode. The HPLC column used for the analysis was symmetry C18 with a length of 250 mm, the internal diameter of 4.6 mm and particle size of 5.0 microns.Results: The developed method was found to be linear with the range of 0.006-250% with a coefficient of correlation 0.99. The precision study revealed that the percentage relative standard deviation was within the acceptable limit. The limit of detection and limit of quantitation of the impurities was less than 0.002%and 0.006% with respect to pioglitazone hydrochloride test concentration of 2000 µg/ml respectively. This method has been validated as per ICH guidelines Q2 (R1).Conclusion: A reliable, economical HPLC method was magnificently established for quantitative analysis of related substances of pioglitazone hydrochloride drug substance.


2007 ◽  
Vol 90 (3) ◽  
pp. 720-724
Author(s):  
Sevgi Tatar Ulu

Abstract A sensitive and selective high-performance liquid chromatographic method has been developed for the determination of tianeptine (Tia) in tablets. The method is based on derivatization of Tia with 4-chloro-7-nitrobenzofurazan (NBD-Cl). A mobile phase consisting of acetonitrile10 mM orthophosphoric acid (pH 2.5; 77 + 23) was used at a flow rate of 1 mL/min on a C18 column. The Tia-NBD derivative was monitored using a fluorescence detector, with emission set at 520 nm and excitation at 458 nm. Gabapentin was selected as an internal standard. Linear calibration graphs were obtained in the concentration range of 45300 ng/mL. The lower limit of detection (LOD) was 10 ng/mL at a signal-to-noise ratio of 4. The lower limit of quantitation (LOQ) was 45 ng/mL. The relative standard values for intra- and interday precision were <0.46 and <0.57%, respectively. The recovery of the drug samples ranged between 98.89 and 99.85%. No chromatographic interference from the tablet excipients was found. The proposed method was validated in terms of precision, robustness, recovery, LOD, and LOQ. All the validation parameters were within the acceptance range. The proposed method was applied for the determination of Tia in commercially available tablets. The results were compared with those obtained by an ultraviolet spectrophotometric method using t- and F-tests.


2019 ◽  
Vol 38 (2) ◽  
pp. 161
Author(s):  
Elif Mine Oncu Kaya

A sensitive Ultra-High Performance Liquid Chromatography (UHPLC)-fluorescence method was developed and validated for the determination of ochratoxin-A (OTA) in Turkish wine samples. Naphthalene was used as an internal standard in this study. OTA was separated on a C18 (3.0 mm × 100 mm × 1.8 µm) column and analyses were run under isocratic conditions, with a mobile phase consisting of water/acetonitrile/acetic acid (50:50:1, v/v/v). The flow rate and injection volume were 0.5 ml min−1 and 10 μl, respectively. The excitation and emission wavelengths were 330 nm and 460 nm for OTA, respectively, and 220 nm and 325 nm for internal standard, respectively. A solid-phase extraction (SPE) clean-up procedure on a C18 cartridge was used prior to the analysis of the wine samples by UHPLC. The developed method was validated with respect to linearity, precision, accuracy, limit of detection (LOD), limit of quantitation (LOQ), stability and robustness. The method presented good RSD (< 4 %) and recovery (102.6–105.2 %) values. The LOD and LOQ values were 0.01 ng ml–1 and 0.05 ng ml–1, respectively. All other parameters were acceptable. OTA amounts were found in the range of 2.72‒7.40 µg kg‒1 in the Turkish wine samples.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Sasiprapa Choochuay ◽  
Jutamas Phakam ◽  
Prakorn Jala ◽  
Thanapoom Maneeboon ◽  
Natthasit Tansakul

A reliable and rapid method has been developed for the determination of aflatoxin B1 (AFB1) in four kinds of feedstuffs comprising broken rice, peanuts, corn, and fishmeal. A sample preparation was carried out based on the QuEChERS method with the exclusion of the clean-up step. In this study, AFB1 was extracted using acetonitrile/methanol (40/60 v/v), followed by partitioning with sodium chloride and magnesium sulfate. High-performance liquid chromatography with precolumn derivatization and fluorescence detection was performed. The coefficients of determination were greater than 0.9800. Throughout the developed method, the recovery of all feedstuffs achieved a range of 82.50-109.85% with relative standard deviation lower than 11% for all analytes at a concentration of 20-100 ng/g. The limit of detection (LOD) ranged from 0.2 to 1.2 ng/g and limit of quantitation (LOQ) ranged from 0.3 to 1.5 ng/g. The validated method was successfully applied to a total of 120 samples. The occurrence of AFB1 contamination was found at the following concentrations: in broken rice (0.44-2.33ng/g), peanut (3.97-106.26ng/g), corn (0.88-50.29 ng/g), and fishmeal (1.06-10.35 ng/g). These results indicate that the proposed method may be useful for regularly monitoring AFB1 contamination in feedstuffs.


2008 ◽  
Vol 91 (3) ◽  
pp. 530-535 ◽  
Author(s):  
Bashar A AlKhalidi ◽  
Majed Shtaiwi ◽  
Hatim S AlKhatib ◽  
Mohammad Mohammad ◽  
Yasser Bustanji

Abstract A fast and reliable method for the determination of repaglinide is highly desirable to support formulation screening and quality control. A first-derivative UV spectroscopic method was developed for the determination of repaglinide in tablet dosage form and for dissolution testing. First-derivative UV absorbance was measured at 253 nm. The developed method was validated for linearity, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ) in comparison to the U.S. Pharmacopeia (USP) column high-performance liquid chromatographic (HPLC) method. The first-derivative UV spectrophotometric method showed excellent linearity [correlation coefficient (r) = 0.9999] in the concentration range of 135 g/mL and precision (relative standard deviation &lt;1.5). The LOD and LOQ were 0.23 and 0.72 g/mL, respectively, and good recoveries were achieved (98101.8). Statistical comparison of results of the first-derivative UV spectrophotometric and the USP HPLC methods using the t-test showed that there was no significant difference between the 2 methods. Additionally, the method was successfully used for the dissolution test of repaglinide and was found to be reliable, simple, fast, and inexpensive.


2015 ◽  
Vol 3 ◽  
pp. 21-26
Author(s):  
Om Prakash Sharma ◽  
Nanthanit Pholphana ◽  
Nuchanart Rangkadilok ◽  
Preeda Parkpian ◽  
Jutamaad Satayavivad

The purpose of this study was to develop a simple and sensitive high performance liquid chromatography (HPLC) method for determination of glyphosate (GP) residues in soybean grains. From soybean matrix, glyphosate was extracted with a mixture of water and methanol (4:1, v/v) from soybean samples followed by protein precipitation with equal volume of methanol. No preconcentration and further clean up of the sample were required. Pre-column derivatization was carried out with excess amount of 9- fluorenylmethyl chloroformate (FMOC-Cl) in the presence of borate buffer. The gradient program developed in this method was successfully applied to a reverse phase HPLC system with a C18 column (ACE 5 μm 4.6 x 250 mm), and eluted with a mobile phase consisting of 50 mM phosphate buffer, pH 2.5, and acetonitrile at the flow rate of 0.8 ml/min and fluorescence detection. Parameters and conditions affecting extraction, derivatization reaction and chromatographic separation were systematically examined. Linearity of the method ranged from 0.005 - 1.0 μg/ml. The correlation coefficient (r2) of calibration curve for glyphosate in soybean sample was found to be 0.99929. The limit of detection (LOD) and limit of quantitation (LOQ) values were determined to be 0.125 mg/kg and 0.25 mg/kg, respectively. Average recovery was 95.2%. Repeatability and intermediate precision calculated on the basis of peak area were excellent and showed relative standard deviation ranged from 0.15 - 1.29% and 1.15 - 3.87%, respectively. The developed method has been successfully applied for determination of glyphosate residues in soybean grains obtained from Thailand and Nepal. Soybean samples (53) from two different lots were analyzed and glyphosate residues ranged from 0.23 mg/kg to 5.06 mg/kg. Almost 50% soybean samples contained nearly consistent residue levels in both lots but in remaining samples there was a significant variation of glyphosate levels between two lots. Relatively higher residues were detected in samples from Thailand (0.27-5.06 mg/kg) compared to Nepal (0.23-0.99 mg/kg). The results suggest that the proposed method can be used to determine glyphosate residues in foods derived from soybean and other crops such as corn, cotton, wheat, etc. where glyphosate is widely applied to these crops.


2020 ◽  
Author(s):  
Sherin Farouk Hammad ◽  
Inas Abdallah ◽  
Alaa Bedair ◽  
Fotouh Mansour

Abstract Salting-out induced liquid-liquid microextraction method has been developed for plasma sample treatment before determination of alogliptin by high performance liquid chromatography with UV detection. Several parameters were optimized to achieve maximum enrichment, including type of extractant, volume of extractant, type of anion, type of cation, salt amount and pH. The optimum conditions were attained using 500 µL of acetonitrile, added to 1 mL of aqueous sample containing 250 mg of sodium chloride at pH 12. An RP-HPLC method was developed and validated according to the International Conference on Harmonization guidelines M10. The method was linear in the concentration range of 0.1 to 50 µg/mL (correlation coefficient= 0.997). The limit of detection was 19 ng/mL and limit of quantitation was 60 ng /mL. The method was accurate and precise with an average % recovery of 99.7% and a % relative standard deviation ranging between 1.5 and 2.5. These results showed that the salting-out induced liquid-liquid microextraction methods could be better than other sample preparation protocols in terms of sensitivity, easiness, solvent consumption and waste reduction.


2020 ◽  
Author(s):  
Sherin Farouk Hammad ◽  
Inas Abdallah ◽  
Alaa Bedair ◽  
Fotouh Mansour

Abstract Salting-out induced liquid-liquid microextraction method has been developed for plasma sample treatment before determination of alogliptin by high performance liquid chromatography with UV detection. Several parameters were optimized to achieve maximum enrichment, including type of extractant, volume of extractant, type of anion, type of cation, salt amount and pH. The optimum conditions were attained using 500 µL of acetonitrile, added to 1 mL of aqueous sample containing 250 mg of sodium chloride at pH 12. An RP-HPLC method was developed and validated according to the International Conference on Harmonization guidelines M10. The method was linear in the concentration range of 0.1 to 50 µg/mL (correlation coefficient= 0.997). The limit of detection was 0.019 µg/mL and limit of quantitation was 0.06 µg/mL. The method was accurate and precise with an average % recovery of 99.7% and a % relative standard deviation ranging between 1.5 and 2.5. These results showed that the salting-out induced liquid-liquid microextraction methods could be better than other sample preparation protocols in terms of sensitivity, easiness, solvent consumption and waste reduction.


BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Sherin F. Hammad ◽  
Inas A. Abdallah ◽  
Alaa Bedair ◽  
Fotouh R. Mansour

AbstractSalting-out induced liquid–liquid microextraction method has been developed for plasma sample treatment before determination of alogliptin by high performance liquid chromatography with UV detection. Several parameters were optimized to achieve maximum enrichment, including type of extractant, volume of extractant, type of anion, type of cation, salt amount and pH. The optimum conditions were attained using 500 µL of acetonitrile, added to 1 mL of aqueous sample containing 250 mg of sodium chloride at pH 12. An RP-HPLC method was developed and validated according to the International Conference on Harmonization guidelines M10. The method was linear in the concentration range of 0.1 to 50 µg/mL (correlation coefficient = 0.997). The limit of detection was 0.019 µg/mL and limit of quantitation was 0.06 µg/mL. The method was accurate and precise with an average % recovery of 99.7% and a % relative standard deviation ranging between 1.5 and 2.5. These results showed that the salting-out induced liquid–liquid microextraction methods could be better than other sample preparation protocols in terms of sensitivity, easiness, solvent consumption and waste reduction.


2020 ◽  
Author(s):  
Sherin Farouk Hammad ◽  
Inas Abdallah ◽  
Alaa Bedair ◽  
Fotouh Mansour

Abstract Salting-out induced liquid-liquid microextraction method has been developed for plasma sample treatment before determination of alogliptin by high performance liquid chromatography with UV detection. Several parameters were optimized to achieve maximum enrichment, including type of extractant, volume of extractant, type of anion, type of cation, salt amount and pH. The optimum conditions were attained using 500 µL of acetonitrile, added to 1 mL of aqueous sample containing 250 mg of sodium chloride at pH 12. An RP-HPLC method was developed and validated according to the International Conference on Harmonization guidelines M10. The method was linear in the concentration range of 0.1 to 50 µg /mL (correlation coefficient= 0.997). The limit of detection was 0.019 µg/mL and limit of quantitation was 0.06 µ g/mL. The method was accurate and precise with an average % recovery of 99.7% and a % relative standard deviation ranging between 1.5 and 2.5. These results showed that the salting-out induced liquid-liquid microextraction methods could be better than other sample preparation protocols in terms of sensitivity, easiness, solvent consumption and waste reduction.


Sign in / Sign up

Export Citation Format

Share Document