scholarly journals Determination of Aflatoxin B1 in Feedstuffs without Clean-Up Step by High-Performance Liquid Chromatography

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Sasiprapa Choochuay ◽  
Jutamas Phakam ◽  
Prakorn Jala ◽  
Thanapoom Maneeboon ◽  
Natthasit Tansakul

A reliable and rapid method has been developed for the determination of aflatoxin B1 (AFB1) in four kinds of feedstuffs comprising broken rice, peanuts, corn, and fishmeal. A sample preparation was carried out based on the QuEChERS method with the exclusion of the clean-up step. In this study, AFB1 was extracted using acetonitrile/methanol (40/60 v/v), followed by partitioning with sodium chloride and magnesium sulfate. High-performance liquid chromatography with precolumn derivatization and fluorescence detection was performed. The coefficients of determination were greater than 0.9800. Throughout the developed method, the recovery of all feedstuffs achieved a range of 82.50-109.85% with relative standard deviation lower than 11% for all analytes at a concentration of 20-100 ng/g. The limit of detection (LOD) ranged from 0.2 to 1.2 ng/g and limit of quantitation (LOQ) ranged from 0.3 to 1.5 ng/g. The validated method was successfully applied to a total of 120 samples. The occurrence of AFB1 contamination was found at the following concentrations: in broken rice (0.44-2.33ng/g), peanut (3.97-106.26ng/g), corn (0.88-50.29 ng/g), and fishmeal (1.06-10.35 ng/g). These results indicate that the proposed method may be useful for regularly monitoring AFB1 contamination in feedstuffs.

Author(s):  
Muhammad Fawad Rasool ◽  
Umbreen Fatima Qureshi ◽  
Nazar Muhammad Ranjha ◽  
Imran Imran ◽  
Mouqadus Un Nisa ◽  
...  

AbstractTh accurate rapid, simple and selective reversed phase high performance liquid chromatography (RP-HPLC) has been established and validated for the determination of captopril (CAP). Chromatographic separation was accomplished using prepacked ODSI C18 column (250 mm × 4.6 mm with 5 μm particle size) in isocratic mode, with mobile phase consisting of water: acetonitrile (60:40 v/v), pH adjusted to 2.5 by using 85% orthophosphoric acid at a flow rate of 1 mL/min and UV detection was performed at 203 nm. RP-HPLC method used for the analysis of CAP in mobile phase and rabbit plasma was established and validated as per ICH-guidelines. It was carried out on a well-defined chromatographic peak of CAP was established with a retention time of 4.9 min and tailing factor of 1.871. The liquid–liquid extraction method was used for extraction of CAP from the plasma. Excellent linearity (R2 = 0.999) was shown over range 3.125–100 µg/mL with mean percentage recoveries ranges from 97 to 100.6%. Parameters of precision and accuracy of the developed method meet the established criteria. Intra and inter-day precision (% relative standard deviation) study was also performed which was less than 2% which indicate good reproducibility of the method. The limit of detection (LOD) and quantification for the CAP in plasma were 3.10 and 9.13 ng/mL respectively. The method was suitably validated and successfully applied to the determination of CAP in rabbit plasma samples.


2011 ◽  
Vol 17 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Bilal Yilmaz ◽  
Kadem Meral ◽  
Ali Asci ◽  
Yavuz Organer

In this study, a new and rapid spectrofluorometry and high performance liquid chromatography (HPLC) methods were developed for determination of metoprolol in pure and pharmaceutical dosage forms. The solvent system, wavelength of detection and chromatographic conditions were optimized in order to maximize the sensitivity of both the proposed methods. The linearity was established over the concentration range of 50-4000 ng ml-1 for spectrofluorometry and 5.0-300 ng ml-1 for HPLC methods. The intra- and inter-day relative standard deviation (RSD) was less than 4.14 and 3.86% for spectrofluorometry and HPLC, respectively. Limit of quantitation was determined as 30 and 5.0 ng ml-1 for spectrofluorometry and HPLC, respectively. No interference was found from tablet excipients at the selected assay conditions. The methods were applied for the quality control of commercial metoprolol dosage forms to quantify the drug and to check the formulation content uniformity.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Jia Meng ◽  
Xu Wang

Fluoroquinolones are considered as gold standard for the prevention of bacterial infections. To improve assessment of antibacterial efficacy, a novel method for determination of levofloxacin was developed and validated. Deep eutectic solvents (DESs) as only green solvent were used as a porogen for preparation of water-compatible molecularly imprinted polymers (MIPs) with a pseudotemplate. The DESs-MIPs were characterized in detail, including scanning electron microscope, nitrogen sorption porosimetry, and Fourier transform-infrared spectra. Clearly, the maximum binding capacity of levofloxacin on DESs-MIPs in water and methanol was 0.216 and 0.077 μmol g−1, respectively. The DESs-MIPs as adsorbing materials were applied in microextraction by packed sorbent (MEPS), and the DESs-MIPs-MEPS conditions were optimized. The DESs-MIPs-MEPS coupled with ultra-high-performance liquid chromatography (UHPLC) was used to determine levofloxacin in human plasma. The method was found linear over 0.05–10 μg mL−1 with coefficient of correlation equal to 0.9988. The limit of detection and limit of quantification were 0.012 and 0.04 μg mL−1, respectively. At three spiked levels, the precision of proposed method was between 95.3% and 99.7% with intraday and interday relative standard deviations ≤8.9%. Finally, the developed method was used to examine levofloxacin from human plasma of 20 hospitalized patients after transrectal ultrasound-guided prostate biopsy, and the average concentration (±SD) of levofloxacin was 2.35 ± 0.99 μg mL−1 in plasma.


Author(s):  
MUCHTARIDI MUCHTARIDI ◽  
IDA MUSFIROH ◽  
AHMAD FAUZI

Objective: The aim of this study is to develop a simple, precise and accurate analytical method of deoxyarbutin in anhydrous emulsion system preparation. Methods: The analysis was conducted using high-performance liquid chromatography (HPLC). Chromatographic analysis was carried out using a reversed phase-C18 column. The mobile consists of two phases methanol and water (60: 40 v/v) at a flow rate of 1.0 ml/min. The determinations were performed using UV detector set at 225 nm. All validation procedures were added with hydroquinone as an internal standard. Results: The method showed coefficient correlation is 0.9978, relative standard deviation (RSD) smaller than 2%, Limit of Detection (LOD) and Limit of Quantitation (LOQ) are 0.599 µg/ml and 1.817 µg/ml respectively. The total amount deoxyarbutin in anhydrous emulsion preparation is 1.964+0.02 % with 98% recovery percentage. Conclusion: The developed HPLC analytical method meets the validation criteria made by International Conference on Harmonisation (ICH).


2010 ◽  
Vol 7 (3) ◽  
pp. 962-966 ◽  
Author(s):  
Naveen Kumar ◽  
Nishant Verma ◽  
Omveer Songh ◽  
Naveen Joshi ◽  
Kanwar Gaurav Singh

A simple, precise, sensitive, fast and accurate high performance liquid chromatography method has been developed for the determination of atenolol using mixture of phosphate buffer and acetonitrile (53:47 v/v) as mobile phase. Buffer was prepared by mixing 0.02 M K2PO4and 0.003 M KH2PO4in equal proportion. Detection was carried out using UV detector at λmax230 nm. Column was ODS and dimensions of column was 25 mm × 4.6 mm. Atenolol was eluted out at retention time of 2.1 min. Method was validated at 1.2 mL/min flow rate. Calibration curve was linear between ranges of 40 to 200 mcg concentration. The limit of detection was calculates 120 nano gram and limit of quantitation is 510 nano gram. The relative standard deviation (RSD) of atenolol was 0.6. The percentage recovery of atenolol was 99.6%.


2020 ◽  
Vol 8 (2) ◽  
pp. 1-7
Author(s):  
Ihsan M. Shaheed ◽  
Saadiyah A. Dhahir

The quinolizindine alkaloid compound, oxymatrine pesticide, was analysis in the river water samples collected from different agriculture areas in the Iraqi city of Kerbala and also in its formulation using developed reverse-phase high-performance liquid chromatography method. Acetonitrile:methanol (60:40 v/v) was chosen as mobile phase at pH (7.0), flow rate 0.5 mL/min, and 20 µL as volume injection. Modified ecological-friendly method, dispersive liquid-liquid microextraction, was used for the extraction of oxymatrine from water samples. Linearity study was constructed from 0.1 to 70 μg/mL at λmax 205 nm. The limit of detection and limit of quantification were 0.025 and 0.082 μg/mL, respectively, and the relative standard deviation (RSD) % was 0.518%. Three spiked levels of concentration (20.0, 40.0, and 70.0 μg/mL) were used for the validation method. The percentage recovery for the three spiked samples was ranged between 98.743 and 99.432 and the RSD% was between 0.051 and 0.202%, the formulation studies of oxymatrine between 99.487 and 99.798, and the RSD% was ranged from 0.045 to 0.057%. The developed method can be used accurately and selectively for the determination of oxymatrine in environmental samples and in the formulation.


2021 ◽  
Vol 5 (4) ◽  
pp. 353-358
Author(s):  
Wiwin Winingsih ◽  
Sri Gustini Husein ◽  
Rozalia Putri Neno Ramdhani

Ethyl para-methoxycinamate (EPMS) is a major compound of Kaempferia galanga L that has anti-inflammatory effect.  The purpose of this study was to determine of EPMS in Kaempferiae galanga L rhizome extract by  High Performance Liquid Chromatography (HPLC) and evaluated the performance of the analysis. This study included determination of system suitability, accuracy, precision, linearity and range, limit of detection (LOD) and Limit of quantitation (LOQ) and selectivity.  The results of system suitability test  HPLC System for EPMS analysis were as follows isocratic elution system of a mobile phase mixture of methanol: water (70:30) containing 0.1% TFA, uv detector at a wavelength of 308 nm using column C18 (150 × 4, 6mm, 5μm) flow rate 1 ml / min. From the analysis, it was found that the average EPMS content was 78.74%. Then method had linear concentration range from 5-360 ppm, with R ² = 0.9999. The LOD and LOQ were 7.0722 ppm and 21.4311 ppm respectively. The accuracy of this method that represented by % recovery was 98.02% - 101.26%. The precision of this method that expressed by Relative Standard Deviation (RSD) was 1.57%. The selectivity of this method that showed by  resolution value was 2.6. Based on the results of the system suitability test and analysis performance evaluation,all parameters met the requirements.


2020 ◽  
Vol 17 (34) ◽  
pp. 1046-1054
Author(s):  
Ihsan Mahdi SHAHEED ◽  
Saadiyah Ahmed DHAHIR

The triazole, tebuconazole pesticide, was determined in its formulation and also in the river water samples collected from different agriculture areas in the Iraqui city of Kerbala using developed high-performance liquid chromatography method(HPLC) with UV-visible detection, The mobile composition phase was a mixture of acetonitrile:methanol (50:50 v/v) and the column was C18 (250 cm x 4.6 mm,5μm). Also modified dispersive liquidliquid microextraction (DLLME), which is regarded as an ecological -friendly method, was used for the extraction of tebuconazole from water samples using acetonitrile and chloroform as solvents extraction and dispersive agent, respectively. Linearity to maintain the calibration curve was achieved from (0.1-70) μg.mL-1 with a limit of detection(0.053) μg.mL-1 and limit of quantification (0.174) μg.mL-1. Three spiked levels of concentration (1.0, 5.0, and 10) μg.mL-1 were used for the validation of the method. The relative standard deviation (RSD%) was (0.294- 0.813)%, and the percentage recovery was (100.001-100.005). The formulation studies for two different concentrations (10 and 40) μg.mL-1, which prepared from tebuconazole formulation (Raxil ODS2 2%), gave acceptable percentage recovery between (98.956-99.833). The developed method can be used accurately for the determination of tebuconazole in water samples and in the formulation of tebuconazole effectively.


2020 ◽  
pp. 1-7
Author(s):  
Xiaobin Li ◽  
Fangfang Gao ◽  
Huitao Liu ◽  
Yuan Gao

Abstract A simple capillary electrophoresis (CE) method with ultraviolet (UV) detection was developed for the determination of hexachlorophene (HCP) in cosmetics. Separation conditions were obtained in 20 mM Na2B4O7, 10% MeOH (pH 9.20), with 25 kV applied voltage and UV detection at 208 nm. Under the selected conditions, electrophoretic analysis was completed in about 4 min, with limit of detection (LOD) of 0.06 µg·mL−1 for HCP. The method was successfully applied to determine HCP in three kinds of cosmetics with relative standard deviations (RSD) of 0.52–3.02% and recoveries from 90.0 to 96.4% for the spiked samples. The results indicated that the proposed method was reliable. Comparative experiments were also carried out with high-performance liquid chromatography (HPLC)-UV method described in National Standards of People's Republic of China. The validation results of the two methods are comparable, but the proposed CE method is simple, rapid, which makes separation and analyte quantification in shorter time with much less reagent consumption.


Author(s):  
LALITHA KV ◽  
RAVEENDRA REDDY J ◽  
DEVANNA N

Objective: This assessment depicts the strength of exhibiting reverse-phase high performance liquid chromatography (RP-HPLC) method for the estimation of torsemide in pharmaceutical estimation structures. Methods: In the present work, total protein-HPLC technique has been produced for the estimation of torsemide active pharmaceutical ingredient (API). Constrained degradation HPLC strategy was created with versatile mobile phase of methanol:water in the proportion of 90:10 v/v. The stream pace of 1 ml/min was utilized on Inertsil ODS 3V segment (250 mm×4.6 mm, 5 μm molecule size). Results: The retention time of torsemide was seen at 8.267 min, method was validated for all validation parameters as per the International Council for Harmonization guidelines. The linearity range was 10–60 μg/ml, correlation coefficient was 0.9993, and percentage relative standard deviation in the precision studies was <2%, with percentage recovery 100.56–101.03 (within acceptable range of 98–102%). The assay result was found to be 100.88% (i.e., within 95–105%), passes the specifications for robustness parameters. Limit of detection of torsemide was found to be 0.0162 μg/ml and limit of quantitation of torsemide was found to be 0.0534 μg/ml. Conclusion: The medication was exceptionally delicate to antacid pursued by at risk to corrosive, photolytic, warm, and oxidative conditions. The created and approved method showing HPLC technique is observed to be direct, exact, precise, explicit, and powerful. Henceforth, the technique can be utilized routinely for the estimation of torsemide API.


Sign in / Sign up

Export Citation Format

Share Document