scholarly journals KEMISKINAN B40 DAN PURATATEMPOH MASA KELUAR (AVERAGE EXIT TIME) DARIPADA KEMISKINAN: KAJIAN KES ISI RUMAH B40 DI DAERAH KUBANG PASU KEDAH

2021 ◽  
Vol 3 (Number 2) ◽  
pp. 33-45
Author(s):  
Shazida Jan Mohd Khan ◽  
Siti Hadijah Che-Mat ◽  
Norehan Abdullah
Keyword(s):  

Kajian kes ini mengukur tempoh purata masa keluar daripada kemiskanan (average exit time) dalam kalangan B40 di Daerah Kubang Pasu, Kedah. Data yang digunakan adalah data primer yang dikumpul daripada ketua isi rumah dengan menggunakan borang soal selidik yang berstruktur. Watts indeks diguna pakai bagi mengira tempoh masa keluar daripada kemiskinan. Pengiraan tempoh masa keluar daripada kemiskinan makin pendek sekiranya ketua isi rumah mempunyai pendapatan lain atau pendapatan sampingan dan bayaran pindahan. Bukti menunjukkan bahawa dengan kadar pertumbuhan pendapatan sebanyak lima peratus, tempoh masa untuk keluar daripada kepompong kemiskinan bagi mereka yang mempunyai pendapatan sampingan dan pendapatan daripada bayaran pindahan adalah lebih pendek iaitu 25 tahun berbanding 42 tahun sekiranya mereka tidak mempunyai pendapatan sampingan dan bayaran pindahan. Ini bermakna kedua-dua pendapatan (sampingan dan bayaran pindahan) dapat menjimatkan tempoh masa keluar kemiskinan selama 16 tahun.

2021 ◽  
pp. 1-19
Author(s):  
Jian-Xun Zhang ◽  
Dang-Bo Du ◽  
Xiao-Sheng Si ◽  
Yang Liu ◽  
Chang-Hua Hu

1989 ◽  
Vol 26 (4) ◽  
pp. 807-814 ◽  
Author(s):  
Kyle Siegrist

Consider a sequence of Bernoulli trials between players A and B in which player A wins each trial with probability p∈ [0, 1]. For positive integers n and k with k ≦ n, an (n, k) contest is one in which the first player to win at least n trials and to be ahead of his opponent by at least k trials wins the contest. The (n, 1) contest is the Banach match problem and the (n, n) contest is the gambler's ruin problem. Many real contests (such as the World Series in baseball and the tennis game) have an (n, 1) or an (n, 2) format. The (n, k) contest is formulated in terms of the first-exit time of the graph of a random walk from a certain region of the state-time space. Explicit results are obtained for the probability that player A wins an (n, k) contest and the expected number of trials in an (n, k) contest. Comparisons of (n, k) contests are made in terms of the probability that the stronger player wins and the expected number of trials.


1999 ◽  
Vol 60 (6) ◽  
pp. R6295-R6298 ◽  
Author(s):  
L. Biferale ◽  
M. Cencini ◽  
D. Vergni ◽  
A. Vulpiani
Keyword(s):  

1976 ◽  
Vol 8 (2) ◽  
pp. 246-247
Author(s):  
R. Syski

2012 ◽  
Vol 52 (supplement) ◽  
pp. S84
Author(s):  
Eiji Yamamoto ◽  
Takuma Akimoto ◽  
Yoshinori Hirano ◽  
Masato Yasui ◽  
Kenji Yasuoka

1995 ◽  
Vol 50 (6) ◽  
pp. 1001-1011 ◽  
Author(s):  
Massimiliano Giona ◽  
Alessandra Adrover ◽  
Alessandro R. Giona

Author(s):  
Jianfeng Lu ◽  
Stefan Steinerberger

The purpose of this short paper is to give a variation on the classical Donsker–Varadhan inequality, which bounds the first eigenvalue of a second-order elliptic operator on a bounded domain Ω by the largest mean first exit time of the associated drift–diffusion process via λ 1 ≥ 1 sup x ∈ Ω E x τ Ω c . Instead of looking at the mean of the first exit time, we study quantiles: let d p , ∂ Ω : Ω → R ≥ 0 be the smallest time t such that the likelihood of exiting within that time is p , then λ 1 ≥ log ( 1 / p ) sup x ∈ Ω d p , ∂ Ω ( x ) . Moreover, as p → 0 , this lower bound converges to λ 1 .


Sign in / Sign up

Export Citation Format

Share Document