scholarly journals Finite system approximation in colloidal systems with aggregation and break-up

Author(s):  
Salina Aktar

In this Thesis, reactive multiparticle collision dynamics (RMPC) is used to simulate red blood cell cluster concentration profiles in the presence of aggregation, as well as when aggregation and break-up are present together. RMPC dynamics involves local collisions, reactions and free-streaming of particles. Reactive mechanisms are used to model the aggregation and break-up of particles. This analogy is motivated by a system of ODES called the Smoluchowski differential equations that have been used to model aggregating systems in the well-mixed case. Exact solutions for the (infinite) systems of ODEs for the Smoluchowski equation are compared to a numerical ODE system solution where the maximum cluster size is N (finite) rather than infinite as assumed in the Smoluchowski equation. The numerical ODE solution is compared to the exact solution in the infinite system when the maximum cluster size is 20 or less. Stochastic RMPC simulations are performed when the maximum cluster size N = 3, and the simulation domain is a cubic volume subject to periodic boundary conditions. Constant and equal aggregation and break-up rates are considered, as well as much smaller aggregation rates compared to break-up rates and vice-versa. Two different initial conditions are considered: monomer-only, as well as non-zero initial concentrations for clusters of all sizes. The simulation for the RMPC (finite), numerical ODE (finite) and exact (infinite) can be shown to have good agreement in the equilibrium concentrations of the chemical species in the system in some cases, although agreement is poor in other cases. This work is an important stepping stone that can be expanded to incorporate flow conditions into the particle dynamics in future work, so as to more accurately investigate pathological conditions including atherosclerotic plaque formation.

2021 ◽  
Author(s):  
Salina Aktar

In this Thesis, reactive multiparticle collision dynamics (RMPC) is used to simulate red blood cell cluster concentration profiles in the presence of aggregation, as well as when aggregation and break-up are present together. RMPC dynamics involves local collisions, reactions and free-streaming of particles. Reactive mechanisms are used to model the aggregation and break-up of particles. This analogy is motivated by a system of ODES called the Smoluchowski differential equations that have been used to model aggregating systems in the well-mixed case. Exact solutions for the (infinite) systems of ODEs for the Smoluchowski equation are compared to a numerical ODE system solution where the maximum cluster size is N (finite) rather than infinite as assumed in the Smoluchowski equation. The numerical ODE solution is compared to the exact solution in the infinite system when the maximum cluster size is 20 or less. Stochastic RMPC simulations are performed when the maximum cluster size N = 3, and the simulation domain is a cubic volume subject to periodic boundary conditions. Constant and equal aggregation and break-up rates are considered, as well as much smaller aggregation rates compared to break-up rates and vice-versa. Two different initial conditions are considered: monomer-only, as well as non-zero initial concentrations for clusters of all sizes. The simulation for the RMPC (finite), numerical ODE (finite) and exact (infinite) can be shown to have good agreement in the equilibrium concentrations of the chemical species in the system in some cases, although agreement is poor in other cases. This work is an important stepping stone that can be expanded to incorporate flow conditions into the particle dynamics in future work, so as to more accurately investigate pathological conditions including atherosclerotic plaque formation.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 517
Author(s):  
Jean-Sébastien Kroll-Rabotin ◽  
Matthieu Gisselbrecht ◽  
Bernhard Ott ◽  
Ronja May ◽  
Jochen Fröhlich ◽  
...  

Removing inclusions from the melt is an important task in metallurgy with critical impact on the quality of the final alloy. Processes employed with this purpose, such as flotation, crucially depend on the particle size. For small inclusions, the aggregation kinetics constitute the bottleneck and, hence, determine the efficiency of the entire process. If particles smaller than all flow scales are considered, the flow can locally be replaced by a plane shear flow. In this contribution, particle interactions in plane shear flow are investigated, computing the fully resolved hydrodynamics at finite Reynolds numbers, using a lattice Boltzmann method with an immersed boundary method. Investigations with various initial conditions, several shear values and several inclusion sizes are conducted to determine collision efficiencies. It is observed that although finite Reynolds hydrodynamics play a significant role in particle collision, statistical collision efficiency barely depends on the Reynolds number. Indeed, the particle size ratio is found to be the prevalent parameter. In a second step, modeled collision dynamics are applied to particles tracked in a fully resolved bubbly flow, and collision frequencies at larger flow scale are derived.


2020 ◽  
Vol 152 (14) ◽  
pp. 144101
Author(s):  
Andrea Montessori ◽  
Marco Lauricella ◽  
Adriano Tiribocchi ◽  
Fabio Bonaccorso ◽  
Sauro Succi

2012 ◽  
Vol 86 (6) ◽  
Author(s):  
Dan S. Bolintineanu ◽  
Jeremy B. Lechman ◽  
Steven J. Plimpton ◽  
Gary S. Grest

Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 168
Author(s):  
Peter J. Nolan ◽  
Hosein Foroutan ◽  
Shane D. Ross

Identifying atmospheric transport pathways is important to understand the effects of pollutants on weather, climate, and human health. The atmospheric wind field is variable in space and time and contains complex patterns due to turbulent mixing. In such a highly unsteady flow field, it can be challenging to predict material transport over a finite-time interval. Particle trajectories are often used to study how pollutants evolve in the atmosphere. Nevertheless, individual trajectories are sensitive to their initial conditions. Lagrangian Coherent Structures (LCSs) have been shown to form the template of fluid parcel motion in a fluid flow. LCSs can be characterized by special material surfaces that organize the parcel motion into ordered patterns. These key material surfaces form the core of fluid deformation patterns, such as saddle points, tangles, filaments, barriers, and pathways. Traditionally, the study of LCSs has looked at coherent structures derived from integrating the wind velocity field. It has been assumed that particles in the atmosphere will generally evolve with the wind. Recent work has begun to look at the motion of chemical species, such as water vapor, within atmospheric flows. By calculating the flux associated with each species, a new effective flux-based velocity field can be obtained for each species. This work analyzes generalized species-weighted coherent structures associated with various chemical species to find their patterns and pathways in the atmosphere, providing a new tool and language for the assessment of pollutant transport and patterns.


Sign in / Sign up

Export Citation Format

Share Document