scholarly journals Estimation of Weibull parameters using artificial neural network

2021 ◽  
Author(s):  
Md. Sujauddin Mallick

Weibull distribution is an important distribution in the field of reliability. In this distribution usually there are two parameters. The usual parameter estimation method is maximum likelihood estimation. Maximum likelihood estimation requires mathematical formulation and prior assumption. Non parametric method such as neural network does not require prior assumption and mathematical formulation. They need data to formulate the model. In this report feed forward neural network with back propagation is used to estimate the parameters of a two-parameter Weibull distribution based on four Scenarios. The Scenario consists of training and test data set. Training and test data set generated through simulated time to failure events using wblrnd function in MATLAB. The input to the network is time to failure, and the output is shape and scale parameters. The network is trained and tested using trainbr algorithm in MATLAB. The network performed better on Scenario 2 which has the larger number of training examples of shape and scale.

2021 ◽  
Author(s):  
Md. Sujauddin Mallick

Weibull distribution is an important distribution in the field of reliability. In this distribution usually there are two parameters. The usual parameter estimation method is maximum likelihood estimation. Maximum likelihood estimation requires mathematical formulation and prior assumption. Non parametric method such as neural network does not require prior assumption and mathematical formulation. They need data to formulate the model. In this report feed forward neural network with back propagation is used to estimate the parameters of a two-parameter Weibull distribution based on four Scenarios. The Scenario consists of training and test data set. Training and test data set generated through simulated time to failure events using wblrnd function in MATLAB. The input to the network is time to failure, and the output is shape and scale parameters. The network is trained and tested using trainbr algorithm in MATLAB. The network performed better on Scenario 2 which has the larger number of training examples of shape and scale.


Author(s):  
RS Sinha ◽  
AK Mukhopadhyay

The primary crusher is essential equipment employed for comminuting the mineral in processing plants. Any kind of failure of its components will accordingly hinder the performance of the plant. Therefore, to minimize sudden failures, analysis should be undertaken to improve performance and operational reliability of the crushers and its components. This paper considers the methods for analyzing failure rates of a jaw crusher and its critical components application of a two-parameter Weibull distribution in a mineral processing plant fitted using statistical tests such as goodness of fit and maximum likelihood estimation. Monte Carlo simulation, analysis of variance, and artificial neural network are also applied. Two-parameter Weibull distribution is found to be the best fit distribution using Kolmogorov–Smirnov test. Maximum likelihood estimation method is used to find out the shape and scale parameter of two-parameter Weibull distribution. Monte Carlo simulation generates 40 numbers of shape parameters, scale parameters, and time. Further, 40 numbers of Weibull distribution parameters are evaluated to examine the failure rate, significant difference, and regression coefficient using ANOVA. Artificial neural network with back-propagation algorithm is used to determine R2 and is compared with analysis of variance.


2022 ◽  
Vol 7 (2) ◽  
pp. 2820-2839
Author(s):  
Saurabh L. Raikar ◽  
◽  
Dr. Rajesh S. Prabhu Gaonkar ◽  

<abstract> <p>Jaya algorithm is a highly effective recent metaheuristic technique. This article presents a simple, precise, and faster method to estimate stress strength reliability for a two-parameter, Weibull distribution with common scale parameters but different shape parameters. The three most widely used estimation methods, namely the maximum likelihood estimation, least squares, and weighted least squares have been used, and their comparative analysis in estimating reliability has been presented. The simulation studies are carried out with different parameters and sample sizes to validate the proposed methodology. The technique is also applied to real-life data to demonstrate its implementation. The results show that the proposed methodology's reliability estimates are close to the actual values and proceeds closer as the sample size increases for all estimation methods. Jaya algorithm with maximum likelihood estimation outperforms the other methods regarding the bias and mean squared error.</p> </abstract>


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Mohammed Haiek ◽  
Youness El Ansari ◽  
Nabil Ben Said Amrani ◽  
Driss Sarsri

In this paper, we propose a stochastic model to describe over time the evolution of stress in a bolted mechanical structure depending on different thicknesses of a joint elastic piece. First, the studied structure and the experiment numerical simulation are presented. Next, we validate statistically our proposed stochastic model, and we use the maximum likelihood estimation method based on Euler–Maruyama scheme to estimate the parameters of this model. Thereafter, we use the estimated model to compare the stresses, the peak times, and extinction times for different thicknesses of the elastic piece. Some numerical simulations are carried out to illustrate different results.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yifan Sun ◽  
Xiang Xu

As a widely used inertial device, a MEMS triaxial accelerometer has zero-bias error, nonorthogonal error, and scale-factor error due to technical defects. Raw readings without calibration might seriously affect the accuracy of inertial navigation system. Therefore, it is necessary to conduct calibration processing before using a MEMS triaxial accelerometer. This paper presents a MEMS triaxial accelerometer calibration method based on the maximum likelihood estimation method. The error of the MEMS triaxial accelerometer comes into question, and the optimal estimation function is established. The calibration parameters are obtained by the Newton iteration method, which is more efficient and accurate. Compared with the least square method, which estimates the parameters of the suboptimal estimation function established under the condition of assuming that the mean of the random noise is zero, the parameters calibrated by the maximum likelihood estimation method are more accurate and stable. Moreover, the proposed method has low computation, which is more functional. Simulation and experimental results using the consumer low-cost MEMS triaxial accelerometer are presented to support the abovementioned superiorities of the maximum likelihood estimation method. The proposed method has the potential to be applied to other triaxial inertial sensors.


2014 ◽  
Vol 1070-1072 ◽  
pp. 2073-2078
Author(s):  
Xiu Ji ◽  
Hui Wang ◽  
Chuan Qi Zhao ◽  
Xu Ting Yan

It is difficult to estimate the parameters of Weibull distribution model using maximum likelihood estimation based on particle swarm optimization (PSO) theory for which is easy to fall into premature and needs more variables, ant colony algorithm theory was introduced into maximum likelihood method, and a parameter estimation method based on ant colony algorithm theory was proposed, an example was simulated to verify the feasibility and effectiveness of this method by comparing with ant colony algorithm and PSO.This template explains and demonstrates how to prepare your camera-ready paper for Trans Tech Publications. The best is to read these instructions and follow the outline of this text.


Sign in / Sign up

Export Citation Format

Share Document