scholarly journals Multifractal correlation using wavelet transform modulus maxima

2021 ◽  
Author(s):  
Asif Hasan Sharif

The wavelet transform modulus maxima method (WTMM) for a single time series is generalized to multiple time series. The new method, which is called the joint WTMM analysis in this work, allows analyses of multifractal correlation between simultaneously measured data. Dependent, partly dependent and independent binomial cascades are used to test the joint WTMM formulism and the degree of correlation assessed qualitatively is found to agree well with the theoretical predictions. Finally, the technique is applied to simultaneously measured surface scalp potential and heart rate data taken from two healthy human subjects. Via this new method, it is shown that there is multifractal correlation between the fractal dynamics in the cortex and the autonomic regulation of the heart rate.

2021 ◽  
Author(s):  
Asif Hasan Sharif

The wavelet transform modulus maxima method (WTMM) for a single time series is generalized to multiple time series. The new method, which is called the joint WTMM analysis in this work, allows analyses of multifractal correlation between simultaneously measured data. Dependent, partly dependent and independent binomial cascades are used to test the joint WTMM formulism and the degree of correlation assessed qualitatively is found to agree well with the theoretical predictions. Finally, the technique is applied to simultaneously measured surface scalp potential and heart rate data taken from two healthy human subjects. Via this new method, it is shown that there is multifractal correlation between the fractal dynamics in the cortex and the autonomic regulation of the heart rate.


2003 ◽  
Vol 104 (3) ◽  
pp. 295-302 ◽  
Author(s):  
Mario VAZ ◽  
A.V. BHARATHI ◽  
S. SUCHARITA ◽  
D. NAZARETH

Alterations in autonomic nerve activity in subjects in a chronically undernourished state have been proposed, but have been inadequately documented. The present study evaluated heart rate and systolic blood pressure variability in the frequency domain in two underweight groups, one of which was undernourished and recruited from the lower socio-economic strata [underweight, undernourished (UW/UN); n = 15], while the other was from a high class of socio-economic background [underweight, well nourished (UW/WN); n = 17], as well as in normal-weight controls [normal weight, well nourished (NW/WN); n = 27]. Baroreflex sensitivity, which is a determinant of heart rate variability, was also assessed. The data indicate that total power (0–0.4Hz), low-frequency power (0.04–0.15Hz) and high-frequency power (0.15–0.4Hz) of RR interval variability were significantly lower in the UW/UN subjects (P<0.05) than in the NW/WN controls when expressed in absolute units, but not when the low- and high-frequency components were normalized for total power. Baroreflex sensitivity was similarly lower in the UW/UN group (P<0.05). Heart rate variability parameters in the UW/WN group were generally between those of the UW/UN and NW/WN groups, but were not statistically different from either. The mechanisms that contribute to the observed differences between undernourished and normal-weight groups, and the implications of these differences, remain to be elucidated.


1996 ◽  
Vol 58 (1-2) ◽  
pp. 44-50 ◽  
Author(s):  
Michio Watanabe ◽  
Yutaka Shimada ◽  
Shinya Sakai ◽  
Naotoshi Shibahara ◽  
Harumi Matsuda ◽  
...  

2013 ◽  
Vol 765-767 ◽  
pp. 2105-2108
Author(s):  
Xu Wen Li ◽  
Bi Wei Zhang ◽  
Qiang Wu

In ECG signals accurate detection to the position of QRS complex is a key to automatic analysis and diagnosis system. And its premise is that effectively remove all kinds of noise interference in ECG signal. Here, a method of detecting QRS based on EMD and wavelet transform was presented which is aim to improve the anti-noise performance of the detection algorithm. It is combined EMD with the theory of singularity detecting based on wavelet transform modulus maxima method. It has the high detection accuracy and good precision that can give an effective way to the automatic analysis for ECG signal.


Sign in / Sign up

Export Citation Format

Share Document