scholarly journals An air dispersion model for the city of Toronto, Ontario, Canada

2021 ◽  
Author(s):  
Barbara Sylvestre-Williams

Air quality is a major concern for the public; therefore, the reliability of models in predicting the air quality accurately is of a major interest. The objective of this study was to develop an air dispersion model and demonstrate that it can be successfully used in place of or in conjunction with ambient air monitoring stations in determining the local Air Quality Index (AQI). This thesis begins with a review of existing atmospheric dispersion models, specifically, the Gaussian Plume models and their capabilities to handle the atmospheric chemistry of nitrogen oxides (NOx) and sulphur dioxides (SO₂). It also includes a review of wet deposition in the form of in-cloud, below-cloud, and snow scavenging. Existing dispersion models are investigated to assess their capability of representing atmospheric chemistry, specifically in the context of NOx and SO₂x substances and their applications to urban areas. A review was completed of previous studies where Gaussian dispersion models were applied to major cities around the world such as London, Helsinki, Kanto, and Prague, to predict ground level concentrations NOx and SO₂. For the purpose of this thesis, Gaussian air dispersion model was developed, known as the Air dispersion model for the Road Sources in Urban areas (ARSUS) model, which is capable of predicting ground level concentrations for a contaminant of interest. The ARSUS model was validated against the US EPA ISC3 model before it was used to conduct the two studies in this investigation. These two studies simulated weekday morning rush hour tailpipe emissions of CO and predicted ground level concentrations. The first study used the ARSUS model ARSUS model to predict ground level concentrations of CO from the tailpipe emissions of CO for roads and highways located in the vicinity of the Toronto West ambient air monitoring station. The second study involved an expansion of the domain to predict ground level concentrations of CO from tailpipe emissions from highways located in the City of Toronto. The modelled concentrations were then compared to the Toronto West ambient air monitoring station. ARSUS model’s results indicate that air quality in the immediate vicinity of roads or highways is highly impacted by the tailpipe emissions. Higher concentrations are observed for the areas adjacent to the road and highway sources. The tailpipe emissions of CO from highways have a higher contribution to the local air quality. The predicted ground level concentration from the ARSUS model do under-predict when compared to the observed data from the monitoring station; however, despite this a predictive model is viable.

2021 ◽  
Author(s):  
Barbara Sylvestre-Williams

Air quality is a major concern for the public; therefore, the reliability of models in predicting the air quality accurately is of a major interest. The objective of this study was to develop an air dispersion model and demonstrate that it can be successfully used in place of or in conjunction with ambient air monitoring stations in determining the local Air Quality Index (AQI). This thesis begins with a review of existing atmospheric dispersion models, specifically, the Gaussian Plume models and their capabilities to handle the atmospheric chemistry of nitrogen oxides (NOx) and sulphur dioxides (SO₂). It also includes a review of wet deposition in the form of in-cloud, below-cloud, and snow scavenging. Existing dispersion models are investigated to assess their capability of representing atmospheric chemistry, specifically in the context of NOx and SO₂x substances and their applications to urban areas. A review was completed of previous studies where Gaussian dispersion models were applied to major cities around the world such as London, Helsinki, Kanto, and Prague, to predict ground level concentrations NOx and SO₂. For the purpose of this thesis, Gaussian air dispersion model was developed, known as the Air dispersion model for the Road Sources in Urban areas (ARSUS) model, which is capable of predicting ground level concentrations for a contaminant of interest. The ARSUS model was validated against the US EPA ISC3 model before it was used to conduct the two studies in this investigation. These two studies simulated weekday morning rush hour tailpipe emissions of CO and predicted ground level concentrations. The first study used the ARSUS model ARSUS model to predict ground level concentrations of CO from the tailpipe emissions of CO for roads and highways located in the vicinity of the Toronto West ambient air monitoring station. The second study involved an expansion of the domain to predict ground level concentrations of CO from tailpipe emissions from highways located in the City of Toronto. The modelled concentrations were then compared to the Toronto West ambient air monitoring station. ARSUS model’s results indicate that air quality in the immediate vicinity of roads or highways is highly impacted by the tailpipe emissions. Higher concentrations are observed for the areas adjacent to the road and highway sources. The tailpipe emissions of CO from highways have a higher contribution to the local air quality. The predicted ground level concentration from the ARSUS model do under-predict when compared to the observed data from the monitoring station; however, despite this a predictive model is viable.


2017 ◽  
Vol 29 (5) ◽  
pp. 1150-1154 ◽  
Author(s):  
A.K. Dash ◽  
S.K. Sahu ◽  
A. Pradhan ◽  
S.K. Dash ◽  
R.N. Kolli

2016 ◽  
Vol 217 ◽  
pp. 42-51 ◽  
Author(s):  
Carola Graf ◽  
Athanasios Katsoyiannis ◽  
Kevin C. Jones ◽  
Andrew J. Sweetman

2017 ◽  
Vol 10 ◽  
pp. 117862211770090 ◽  
Author(s):  
Supitchaya Tunlathorntham ◽  
Sarawut Thepanondh

The AERMOD dispersion model was evaluated for its performance in predicting 1-hour average nitrogen dioxide (NO2) concentrations in the vicinity of the largest petrochemical industrial complex in Thailand during the period between January 2012 and December 2013. Measured data from 10 ambient air monitoring stations were intensively used to compare with modeled results. Model results indicated that the tier 1 approach (full conversion of NOx to NO2) provided the most accurate results compared with other tiers. It also performed very well in predicting the extreme end of NO2 concentrations. With an absence of emission data from mobile sources, tier 1 was concluded as the most appropriate scheme for prediction of ambient NO2 ground-level concentrations in this study.


2016 ◽  
Vol 569-570 ◽  
pp. 603-610 ◽  
Author(s):  
I.J. van Wesenbeeck ◽  
S.A. Cryer ◽  
O. de Cirugeda Helle ◽  
C. Li ◽  
J.H. Driver

2016 ◽  
Vol 11 (3) ◽  
pp. 197-203 ◽  
Author(s):  
J. Suhana ◽  
M. Rashid

Abstract Natural minerals may contain radionuclides of natural origin of Uranium-238 (238U) and Thorium-232 (232Th) decay series. Similarly, coal like any other minerals found in nature contains trace amount of such naturally occurring radionuclides including Potassium-40 (40K). The generation of electricity by coal fired power plant (CFPP) releases particulates emission to the atmosphere and deposited on the surrounding area that may increase the natural background radiation level within the facility. This paper presents an evaluation of the natural radioactivity concentration found in the particulates emission from a typical CFPP in Malaysia. Standard Gaussian dispersion model approach was used to predict the potential radiological hazards arising from the particulates released from the stack. The predicted maximum ground level particulate (Cmax) concentration and downwind distance (X) was 52 µg m–3 and 1,600 m of away from the CFPP, respectively. The air dispersion modelling results recorded that the calculated Cmax released from the CFPP was found lower than the national and international ambient air quality limits, which means that radiological hazards due to inhalation of natural radionuclides in particulate released to the environment is insignificant. The findings revealed that, this activity does not impose any significant radiological risk to the human population at large and the operation is in compliance with the national legislation and international practice.


2021 ◽  
Vol 13 (8) ◽  
pp. 4276
Author(s):  
Awkash Kumar ◽  
Anil Kumar Dikshit ◽  
Rashmi S. Patil

The Gaussian-based dispersion model American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) is being used to predict concentration for air quality management in several countries. A study was conducted for an industrial area, Chembur of Mumbai city in India, to assess the agreement of observed surface meteorology and weather research and forecasting (WRF) output through AERMOD with ground-level NOx and PM10 concentrations. The model was run with both meteorology and emission inventory. When results were compared, it was observed that the air quality predictions were better with the use of WRF output data for a model run than with the observed meteorological data. This study showed that the onsite meteorological data can be generated by WRF which saves resources and time, and it could be a good option in low-middle income countries (LIMC) where meteorological stations are not available. Also, this study quantifies the source contribution in the ambient air quality for the region. NOx and PM10 emission loads were always observed to be high from the industries but NOx concentration was high from vehicular sources and PM10 concentration was high from industrial sources in ambient concentration. This methodology can help the regulatory authorities to develop control strategies for air quality management in LIMC.


2012 ◽  
Vol 61 ◽  
pp. 570-579 ◽  
Author(s):  
Laura Ranzato ◽  
Alberto Barausse ◽  
Alice Mantovani ◽  
Alberto Pittarello ◽  
Maurizio Benzo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document