Analysis of 3 Phase Induction Motor Speed Control with Direct Torque Control (DTC) Method Based on PID Control

2020 ◽  
Vol 7 (2) ◽  
Author(s):  
Mokh. Suseno Aji Sari ◽  
Hadi Suyono ◽  
Abraham Lomi

This research was conducted to regulate the three phase induction motor speed regulation system. Changes in load on the motor affect the motor speed response so it does not match the set point speed. This study uses the Direct Torque Control (DTC) method in regulating the speed of an induction motor. The DTC method is a vector control method that is directly assigned to the inverter. DTC method in controlling speed based on Proportional Integral Differential (PID) control. Determination of PID tunning using two methods, namely, ziegler-nichols and cohen-coon method. The ziegler-nichols method have overshoot speeds starting at 0.8% of the setpoint, whereas using the cohen coon method there is no overshoot and the speed at stable conditions matches the setpoint.

2011 ◽  
Vol 354-355 ◽  
pp. 1252-1256
Author(s):  
You Tao Zhao ◽  
Yan Cheng Liu ◽  
Jun Jie Ren

With the development of AC (alternating current )technique, larger power PMSM ( permanent m- agnet synchronous motor ) has been applied in the marine electric propulsion systems. In this paper the imple- mentation of the DTC (direct torque control) systems for a variable-speed 4088kW PMSM in ship electric propulsion systems has been studied. A novel control method using SVPWM (space vector pulse width mo- dulation) was proposed and a SVPWM module was designed. Then a DTC – SVPWM simulation model of PMSM with the load of propeller was found. The simulation results shows that the variable frequency speed regulation system have good response performance in the process of the motor start or speedup and through comparing the simulation results with the experiment data of the PMSM, the validity of the model is verified.


2014 ◽  
Vol 573 ◽  
pp. 155-160
Author(s):  
A. Pandian ◽  
R. Dhanasekaran

This paper presents improved Fuzzy Logic Controller (FLC) of the Direct Torque Control (DTC) of Three-Phase Induction Motor (IM) for high performance and torque control industrial drive applications. The performance of the IM using PI Controllers and general fuzzy controllers are meager level under load disturbances and transient conditions. The FLC is extended to have a less computational burden which makes it suitable for real time implementation particularly at constant speed and torque disturbance operating conditions. Hybrid control has advantage of integrating a superiority of two or more control techniques for better control performances. A fuzzy controller offers better speed responses for startup and large speed errors. If the nature of the load torque is varied, the steady state speed error of DTC based IM drive with fuzzy logic controller becomes significant. To improve the performance of the system, a new control method, Hybrid fuzzy PI control is proposed. The effectiveness of proposed method is verified by simulation based on MATLAB. The proposed Hybrid fuzzy controller has adaptive control over load toque variation and can maintain constant speed.


The most universally used electric motor is an induction motor fed with three phase supply and eighty percent of mechanical power utilized by industries is given by three phase asynchronous ac motor. Direct torque control method is one such technique for controlling flux and torque of an asynchronous motor fed with PWM VSI. Without any complex control algorithms, it provides easy commands for the control of induction motor flux as well as torque. We are demonstrating the principle of DTC of an asynchromous motor using three level hysteresis controller in this paper. Philosophy of DTC with aforementioned control method has been simulated using MATLAB/Simulink.


2020 ◽  
Vol 9 (1) ◽  
pp. 1196-1202 ◽  

Three phase induction motor drives are the most widely used drives in heavy load industries Because of its wide usage in industry, a small fault occurring in the motor drive may cause huge damage and results in failure of heavy machinaries.Inorder to avoid these failures, all the possible faults that may occur in induction motors are analysed. Based on the analysis performed, the parameters that may cause faults in the drive system are monitored. Even a minute change in the parameters are monitored using an intelligent control method named Fuzzy based monitoring system. In this monitoring system, induction motor drive is adopted with a direct torque control method to avoid the usual torque ripples present in the system. Thisintelligent fault monitoring system is used to take corrective measures within a specified time when the drive is implemented in an electric vehicle applications.


2013 ◽  
Vol 313-314 ◽  
pp. 55-60
Author(s):  
Ridwan Gunawan ◽  
Muhammad Luniara Siregar ◽  
Feri Yusivar

The vector control has become the first alternative in control of three phase induction motor. One of the vector control method which is commonly used is the direct torque control (DTC) method. However, this system has drawback due to the existence of torque ripples. The addition of the duty ratio control base on fuzzy logic can give better performance compared to conventional DTC. By doing an examination on DTC and duty ratio using small, medium and big capacities of three phase induction motors can be shown the influence from moment of inertia to rotor rotation. This paper uses MATLAB SIMULINK for the simulation study with three types of motor power, for example 1, 10 and 50 hp. It is shown that using the same parameters, a motor with a larger moment inertia gives a better performance in comparison to a motor with smaller moment of inertia.


2005 ◽  
Vol 41 (6) ◽  
pp. 1627-1636 ◽  
Author(s):  
R. Bojoi ◽  
F. Farina ◽  
G. Griva ◽  
F. Profumo ◽  
A. Tenconi

Sign in / Sign up

Export Citation Format

Share Document