Hochschild cohomology of II1 factors with Cartan maximal abelian subalgebras

2009 ◽  
Vol 52 (2) ◽  
pp. 287-295 ◽  
Author(s):  
Jan M. Cameron

AbstractIn this paper we prove that, for a type-II1 factor N with a Cartan maximal abelian subalgebra, the Hochschild cohomology groups Hn(N,N)=0 for all n≥1. This generalizes the result of Sinclair and Smith, who proved this for all N having a separable predual.

2016 ◽  
Vol 24 (2) ◽  
pp. 137-147
Author(s):  
Manuel Ceballos ◽  
Juan Núñez ◽  
Ángel F. Tenorio

Abstract In this paper, the maximal abelian dimension is algorithmically and computationally studied for the Lie algebra hn, of n×n upper-triangular matrices. More concretely, we define an algorithm to compute abelian subalgebras of hn besides programming its implementation with the symbolic computation package MAPLE. The algorithm returns a maximal abelian subalgebra of hn and, hence, its maximal abelian dimension. The order n of the matrices hn is the unique input needed to obtain these subalgebras. Finally, a computational study of the algorithm is presented and we explain and comment some suggestions and comments related to how it works.


Author(s):  
Roberto Conti ◽  
Jeong Hee Hong ◽  
Wojciech Szymański

We investigate the structure of the outer automorphism group of the Cuntz algebra and the closely related problem of conjugacy of maximal abelian subalgebras in . In particular, we exhibit an uncountable family of maximal abelian subalgebras, conjugate to the standard maximal abelian subalgebra via Bogolubov automorphisms, that are not inner conjugate to .


Author(s):  
María Julia Redondo ◽  
Lucrecia Román

We construct comparison morphisms between two well-known projective resolutions of a monomial algebra $A$: the bar resolution $\operatorname{\mathbb{Bar}} A$ and Bardzell's resolution $\operatorname{\mathbb{Ap}} A$; the first one is used to define the cup product and the Lie bracket on the Hochschild cohomology $\operatorname{HH} ^*(A)$ and the second one has been shown to be an efficient tool for computation of these cohomology groups. The constructed comparison morphisms allow us to show that the cup product restricted to even degrees of the Hochschild cohomology has a very simple description. Moreover, for $A= \mathbb{k} Q/I$ a monomial algebra such that $\dim_ \mathbb{k} e_i A e_j = 1$ whenever there exists an arrow $\alpha: i \to j \in Q_1$, we describe the Lie action of the Lie algebra $\operatorname{HH}^1(A)$ on $\operatorname{HH}^{\ast} (A)$.


Author(s):  
Viviana Gubitosi

In this paper, we compute the dimension of the Hochschild cohomology groups of any [Formula: see text]-cluster tilted algebra of type [Formula: see text]. Moreover, we give conditions on the bounded quiver of an [Formula: see text]-cluster tilted algebra [Formula: see text] of type [Formula: see text] such that the Gerstenhaber algebra [Formula: see text] has nontrivial multiplicative structures. We also show that the derived class of gentle [Formula: see text]-cluster tilted algebras is not always completely determined by the dimension of the Hochschild cohomology.


2007 ◽  
Vol 19 (07) ◽  
pp. 677-724 ◽  
Author(s):  
FRANÇOIS TREVES

The noncommutative version of the Korteweg–de Vries equation studied here is shown to admit infinitely many constants of motion and to give rise to a hierarchy of higher-order Hamiltonian evolution equations, each one the noncommutative version of the commutative KdV equation of the same order. The noncommutative KdV polynomials span, topologically, a maximal Abelian subalgebra of the Lie algebra of noncommutative Bäcklund transformations. Two classes of examples of "completely integrable" systems of evolution equations to which the theory applies are described in the last two sections.


2010 ◽  
Vol 89 (3) ◽  
pp. 309-315 ◽  
Author(s):  
ROBERTO CONTI

AbstractThe automorphisms of the canonical core UHF subalgebra ℱn of the Cuntz algebra 𝒪n do not necessarily extend to automorphisms of 𝒪n. Simple examples are discussed within the family of infinite tensor products of (inner) automorphisms of the matrix algebras Mn. In that case, necessary and sufficient conditions for the extension property are presented. Also addressed is the problem of extending to 𝒪n the automorphisms of the diagonal 𝒟n, which is a regular maximal abelian subalgebra with Cantor spectrum. In particular, it is shown that there exist product-type automorphisms of 𝒟n that do not extend to (possibly proper) endomorphisms of 𝒪n.


Author(s):  
VIACHESLAV P. BELAVKIN ◽  
MASANORI OHYA

Quantum entanglements, describing truly quantum couplings, are studied and classified for discrete compound states. We show that classical-quantum correspondences such as quantum encodings can be treated as d-entanglements leading to a special class of separable compound states. The mutual information for the d-compound and for q-compound (entangled) states leads to two different types of entropies for a given quantum state. The first one is the von Neumann entropy, which is achieved as the supremum of the information over all d-entanglements, and the second one is the dimensional entropy, which is achieved at the standard entanglement, the true quantum entanglement, coinciding with a d-entanglement only in the commutative case. The q-conditional entropy and q-capacity of a quantum noiseless channel, defined as the supremum over all entanglements, is given as the logarithm of the dimensionality of the input von Neumann algebra. It can double the classical capacity, achieved as the supremum over all semiquantum couplings (d-entanglements, or encodings), which is bounded by the logarithm of the dimensionality of a maximal Abelian subalgebra. The entropic measure for essential entanglement is introduced.


Author(s):  
María Julia Redondo ◽  
Lucrecia Román

We construct comparison morphisms between two well-known projective resolutions of a monomial algebra $A$: the bar resolution $\operatorname{\mathbb{Bar}} A$ and Bardzell's resolution $\operatorname{\mathbb{Ap}} A$; the first one is used to define the cup product and the Lie bracket on the Hochschild cohomology $\operatorname{HH} ^*(A)$ and the second one has been shown to be an efficient tool for computation of these cohomology groups. The constructed comparison morphisms allow us to show that the cup product restricted to even degrees of the Hochschild cohomology has a very simple description. Moreover, for $A= \mathbb{k} Q/I$ a monomial algebra such that $\dim_ \mathbb{k} e_i A e_j = 1$ whenever there exists an arrow $\alpha: i \to j \in Q_1$, we describe the Lie action of the Lie algebra $\operatorname{HH}^1(A)$ on $\operatorname{HH}^{\ast} (A)$.


Sign in / Sign up

Export Citation Format

Share Document