scholarly journals Infrastructure Modeling and Optimization to Solve Real-time Railway Traffic Management Problems

2021 ◽  
Vol 49 (3) ◽  
pp. 270-282
Author(s):  
László Lindenmaier ◽  
István Ferenc Lövétei ◽  
Gábor Lukács ◽  
Szilárd Aradi

Rail transportation helps to reach the global climate targets because it is characterized by low emission. The passenger and freight volumes on the railway increase yearly in line with EU targets. However, delays of passenger and freight trains decrease the punctuality and the reliability of the railway sector and the development of the infrastructure is not enough to increase the average speed of trains. Delays mean cost to the passengers, railway operators, infrastructure managers, and all railway undertakers. Therefore, the reason for the most significant optimization target is to minimize delays. In this paper, a possible solution has been described to solve the real-time railway traffic management problems by applying a mixed-integer linear programming approach. For validation of the research result, one simplified case study has been presented. Based on the result, the presented solution can provide effective support to dispatchers in solving real-time traffic management problems.

2021 ◽  
Vol 49 (3) ◽  
pp. 308
Author(s):  
Periodica Polytechnica Transportation Engineering

László Lindenmaier, István Ferenc Lövétei, Gábor Lukács, Szilárd Aradi "Infrastructure Modeling and Optimization to Solve Real-time Railway Traffic Management Problems", 49(3), pp. 270–282, 2021. (in this issue)https://doi.org/10.3311/PPtr.18582When the above article was first published online some symbols in the text on pages 274–276, Table 7 on page 277, furthermore the subscript of the symbol bs in Eqs. (10), (11) and in the text on page 277 were incorrect. This has now been corrected in the online version. The correct version of some symbols in the text on pages 274–276, Table 7 on page 277, furthermore the subscript of the symbol bs in Eqs. (10), (11) and in the text on page 277 were published in this paper.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 556
Author(s):  
Lucia Lo Bello ◽  
Gaetano Patti ◽  
Giancarlo Vasta

The IEEE 802.1Q-2018 standard embeds in Ethernet bridges novel features that are very important for automated driving, such as the support for time-driven communications. However, cars move in a world where unpredictable events may occur and determine unforeseen situations. To properly react to such situations, the in-car communication system has to support event-driven transmissions with very low and bounded delays. This work provides the performance evaluation of EDSched, a traffic management scheme for IEEE 802.1Q bridges and end nodes that introduces explicit support for event-driven real-time traffic. EDSched works at the MAC layer and builds upon the mechanisms defined in the IEEE 802.1Q-2018 standard.


Author(s):  
Solomon Adegbenro Akinboro ◽  
Johnson A Adeyiga ◽  
Adebayo Omotosho ◽  
Akinwale O Akinwumi

<p><strong>Vehicular traffic is continuously increasing around the world, especially in urban areas, and the resulting congestion ha</strong><strong>s</strong><strong> be</strong><strong>come</strong><strong> a major concern to automobile users. The popular static electric traffic light controlling system can no longer sufficiently manage the traffic volume in large cities where real time traffic control is paramount to deciding best route. The proposed mobile traffic management system provides users with traffic information on congested roads using weighted sensors. A prototype of the system was implemented using Java SE Development Kit 8 and Google map. The model </strong><strong>was</strong><strong> simulated and the performance was </strong><strong>assessed</strong><strong> using response time, delay and throughput. Results showed that</strong><strong>,</strong><strong> mobile devices are capable of assisting road users’ in faster decision making by providing real-time traffic information and recommending alternative routes.</strong></p>


2019 ◽  
Vol 01 (03) ◽  
pp. 139-147
Author(s):  
Wang Haoxiang ◽  
Smys S

The developments in the means of transportation along with the communication advancements has made the automotives to step into its next level of innovation by providing a safe, convenient and well-timed transportation. This is made possible by the introduction of the frame work that is particularly designed to establish connectivity between vehicles on road without any previous structure to support with. This paradigm formed particularly in organizing communication between vehicles is the vehicular Adhoc network (VANET) that causes a vehicles to vehicle connection for proper managing of the traffic flow to make the travel more safe and comfortable. The paper proposes a dynamic mapping of real time traffic with the acquisition of digital map by crowd mapping with clustering to offer path optimization to minimize the delay in the responses, for having an efficient traffic managing. The evaluation of the proposed methodology ensures the minimization of the delay in the communication and the improved delivery ratio incurred, when compared with the carry-forward based routings methods that cause more delay resulting in imperfect traffic management.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3399 ◽  
Author(s):  
Marco Cruz ◽  
Desta Fitiwi ◽  
Sérgio Santos ◽  
Sílvio Mariano ◽  
João Catalão

Electrical distribution system operators (DSOs) are facing an increasing number of challenges, largely as a result of the growing integration of distributed energy resources (DERs), such as photovoltaic (PV) and wind power. Amid global climate change and other energy-related concerns, the transformation of electrical distribution systems (EDSs) will most likely go ahead by modernizing distribution grids so that more DERs can be accommodated. Therefore, new operational strategies that aim to increase the flexibility of EDSs must be thought of and developed. This action is indispensable so that EDSs can seamlessly accommodate large amounts of intermittent renewable power. One plausible strategy that is worth considering is operating distribution systems in a meshed topology. The aim of this work is, therefore, related to the prospects of gradually adopting such a strategy. The analysis includes the additional level of flexibility that can be provided by operating distribution grids in a meshed manner, and the utilization level of variable renewable power. The distribution operational problem is formulated as a mixed integer linear programming approach in a stochastic framework. Numerical results reveal the multi-faceted benefits of operating distribution grids in a meshed manner. Such an operation scheme adds considerable flexibility to the system and leads to a more efficient utilization of variable renewable energy source (RES)-based distributed generation.


Sign in / Sign up

Export Citation Format

Share Document