scholarly journals Traffic Control Scheme for Social Optimum Traffic Assignment with Dynamic Route Pricing for Automated Vehicles

Author(s):  
Qiong Lu ◽  
Tamás Tettamanti

In transportation modeling, after defining a road network and its origin-destination (OD) matrix, the next important question is how to assign traffic among OD-pairs. Nowadays, advanced traveler information systems (ATIS) make it possible to realize the user equilibrium solution. Simultaneously, with the advent of the Cooperative Intelligent Transport Systems (C-ITS), it is possible to solve the traffic assignment problem in a system optimum way. As a potential traffic assignment method in the future transportation system for automated cars, the deterministic system optimum (DSO) is modeled and simulated to investigate the potential changes it may bring to the existing traditional traffic system. In this paper, stochastic user equilibrium (SUE) is used to simulate the conventional traffic assignment method. This work concluded that DSO has considerable advantages in reducing trip duration, time loss, waiting time, and departure delay under the same travel demand. What is more, the SUE traffic assignment has a more dispersed vehicle density distribution. Moreover, DSO traffic assignment helps the maximum vehicle density of each alternative path arrive almost simultaneously. Furthermore, DSO can significantly reduce or avoid the occurrence of excessive congestion.

Author(s):  
Kuilin Zhang ◽  
Hani S. Mahmassani ◽  
Chung-Cheng Lu

This study presents a time-dependent stochastic user equilibrium (TDSUE) traffic assignment model within a probit-based path choice decision framework that explicitly takes into account temporal and spatial correlation (traveler interactions) in travel disutilities across a set of paths. The TDSUE problem, which aims to find time-dependent SUE path flows, is formulated as a fixed-point problem and solved by a simulation-based method of successive averages algorithm. A mesoscopic traffic simulator is employed to determine (experienced) time-dependent travel disutilities. A time-dependent shortest-path algorithm is applied to generate new paths and augment a grand path set. Two vehicle-based implementation techniques are proposed and compared in order to show their impact on solution quality and computational efficiency. One uses the classical Monte Carlo simulation approach to explicitly compute path choice probabilities, and the other determines probabilities by sampling vehicles’ path travel costs from an assumed perception error distribution (also using a Monte Carlo simulation process). Moreover, two types of variance-covariance error structures are discussed: one considers temporal and spatial path choice correlation (due to path overlapping) in terms of aggregated path travel times, and the other uses experienced (or empirical) path travel times from a sample of individual vehicle trajectories. A set of numerical experiments are conducted to investigate the convergence pattern of the solution algorithms and to examine the impact of temporal and spatial correlation on path choice behavior.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Lekai Yuan ◽  
Xi Zhang ◽  
Chaofeng Shi

We derive the exact inefficiency upper bounds of the multiclass C-Logit stochastic user equilibrium (CL-SUE) in a transportation network. All travelers are classified on the basis of different values of time (VOT) into M classes. The multiclass CL-SUE model gives a more realistic path choice probability in comparison with the logit-based stochastic user equilibrium model by considering the overlapping effects between paths. To find efficiency loss upper bounds of the multiclass CL-SUE, two equivalent variational inequalities for the multiclass CL-SUE model, i.e., time-based variational inequality (VI) and monetary-based VI, are formulated. We give four different methods to define the inefficiency of the multiclass CL-SUE, i.e., to compare multiclass CL-SUE with multiclass system optimum, or to compare multiclass CL-SUE with multiclass C-Logit stochastic system optimum (CL-SSO), under the time-based criterion and the monetary-based criterion, respectively. We further investigate the effects of various parameters which include the degree of path overlapping (the commonality factor), the network complexity, degree of traffic congestion, the VOT of user classes, the network familiarity, and the total demand on the inefficiency bounds.


2020 ◽  
Vol 12 (13) ◽  
pp. 5433
Author(s):  
Xueyan Wei ◽  
Wei Wang ◽  
Weijie Yu ◽  
Xuedong Hua ◽  
Yun Xiang

As a countermeasure to urban exhaust pollution and traffic congestion, traffic restriction based on the last digit of license plate numbers has been widely introduced throughout the world. However, the effect of traffic restriction is weakened as it causes the long-distance detour of restricted travel modes and induces travel demand to shift to unrestricted travel modes. To consider detour and shift of traffic demand caused by traffic restriction, we propose a stochastic user equilibrium model under traffic rationing based on mode shifting rate and the corresponding solution algorithm. A case study is conducted to verify the effectiveness of proposed model and algorithm. Main findings of numerical experiments include: (1) Compared with traditional stochastic user equilibrium model, the temporary traffic demand shift caused by long-distance detour are well considered in proposed model. (2) Sensitivity analysis of the consumption parameters used in the proposed model shows that, the involved cost parameters have different effectiveness on the mode shifting rate. This study provides a reasonable relaxation of the intensively used assumption, that all restricted vehicles outside the restricted district will detour in traffic rationing research, and provides a reasonable approach to evaluate the change of link flow and the beneficial effectiveness on the sustainability of traffic environment after implementation of traffic restriction policy.


Sign in / Sign up

Export Citation Format

Share Document