system optimum
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 32)

H-INDEX

22
(FIVE YEARS 3)

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Lekai Yuan ◽  
Xi Zhang ◽  
Chaofeng Shi

We derive the exact inefficiency upper bounds of the multiclass C-Logit stochastic user equilibrium (CL-SUE) in a transportation network. All travelers are classified on the basis of different values of time (VOT) into M classes. The multiclass CL-SUE model gives a more realistic path choice probability in comparison with the logit-based stochastic user equilibrium model by considering the overlapping effects between paths. To find efficiency loss upper bounds of the multiclass CL-SUE, two equivalent variational inequalities for the multiclass CL-SUE model, i.e., time-based variational inequality (VI) and monetary-based VI, are formulated. We give four different methods to define the inefficiency of the multiclass CL-SUE, i.e., to compare multiclass CL-SUE with multiclass system optimum, or to compare multiclass CL-SUE with multiclass C-Logit stochastic system optimum (CL-SSO), under the time-based criterion and the monetary-based criterion, respectively. We further investigate the effects of various parameters which include the degree of path overlapping (the commonality factor), the network complexity, degree of traffic congestion, the VOT of user classes, the network familiarity, and the total demand on the inefficiency bounds.


Author(s):  
A. V. Kulikova

The author continues with her study initially presented in the article “The possibilities of information search in electronic platforms of Russian libraries” (A. V. Kulikova. The possibilities of information search in electronic platforms of russian libraries // The Journal of Encyclopaedic Studies. – 2019. – No 2. – P. 30–52). She demonstrates the methods to be applied for business information search related to local encyclopaedic book publications and identifies the principles to find recent publications promptly and to satisfy user demands most effectively. The bibliographic search success depends upon how the user understands the system. Optimum query formulation saves time and excludes information noise. The key characteristics of library digital information retrieval systems are discussed. The computer systems of 113 regional libraries were analyzed within the study. The following automated library information were tested objectively: IRBIS, RUSLAN, OPAC-Global, Foliant, MacWeb. The author does not intend to advertise or subvertise any ALIS. Her main goal is to reveal the convenient and speedy retrieval methods with existing functionalities.


Author(s):  
Taner Cokyasar ◽  
Felipe de Souza ◽  
Joshua Auld ◽  
Omer Verbas

Efficient dynamic ride-matching (DRM) in large-scale transportation systems is a key driver in transport simulations to yield answers to challenging problems. Although the DRM problem is simple to solve, it quickly becomes a computationally challenging problem in large-scale transportation system simulations. Therefore, this study thoroughly examines the DRM problem dynamics and proposes an optimization-based solution framework to solve the problem efficiently. To benefit from parallel computing and reduce computational times, the problem’s network is divided into clusters utilizing a commonly used unsupervised machine learning algorithm along with a linear programming model. Then, these sub-problems are solved using another linear program to finalize the ride-matching. At the clustering level, the framework allows users adjusting cluster sizes to balance the trade-off between the computational time savings and the solution quality deviation. A case study in the Chicago Metropolitan Area, U.S., illustrates that the framework can reduce the average computational time by 58% at the cost of increasing the average pick up time by 26% compared with a system optimum, that is, non-clustered, approach. Another case study in a relatively small city, Bloomington, Illinois, U.S., shows that the framework provides quite similar results to the system-optimum approach in approximately 62% less computational time.


Author(s):  
Qiong Lu ◽  
Tamás Tettamanti

In transportation modeling, after defining a road network and its origin-destination (OD) matrix, the next important question is how to assign traffic among OD-pairs. Nowadays, advanced traveler information systems (ATIS) make it possible to realize the user equilibrium solution. Simultaneously, with the advent of the Cooperative Intelligent Transport Systems (C-ITS), it is possible to solve the traffic assignment problem in a system optimum way. As a potential traffic assignment method in the future transportation system for automated cars, the deterministic system optimum (DSO) is modeled and simulated to investigate the potential changes it may bring to the existing traditional traffic system. In this paper, stochastic user equilibrium (SUE) is used to simulate the conventional traffic assignment method. This work concluded that DSO has considerable advantages in reducing trip duration, time loss, waiting time, and departure delay under the same travel demand. What is more, the SUE traffic assignment has a more dispersed vehicle density distribution. Moreover, DSO traffic assignment helps the maximum vehicle density of each alternative path arrive almost simultaneously. Furthermore, DSO can significantly reduce or avoid the occurrence of excessive congestion.


Author(s):  
Aikaterini Kampouri ◽  
Ioannis Politis ◽  
Georgios Georgiadis

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 575
Author(s):  
Viet Nhan Hoa Nguyen ◽  
Si Jeong Song ◽  
Man Seung Lee

Platinum group metals (PGMs) are important for the manufacture of advanced materials in the field of catalysts and electronic devices. Since the chemical properties of PGMs are very similar to each other, hydrometallurgical processes should be employed to recover PGMs with high purity from either ores or secondary resources. In hydrometallurgical processes for PGMs, the first step is the dissolution of PGMs. For this purpose, inorganic acid solutions with oxidizing agents are generally employed. In this work, nonaqueous solvent leaching systems with a relatively cheap price were employed to investigate the dissolution of pure palladium (Pd) metal. The solvent leaching systems consisted of concentrated hydrochloric acid solution and commercial extractants such as tributyl phosphate (TBP), 7-hydroxydodecan-6-one oxime (LIX 63), and di-n-octyl sulfide (DOS) in the presence of H2O2 as an oxidizing agent. Among the three systems, TBP showed the best efficiency for the dissolution of Pd. The effect of several parameters like TBP concentration, temperature, time, stirring speed and the weight ratio of Pd to TBP/HCl/H2O2 was explored. The dissolution percentage of Pd by the HCl–H2O2–TBP system was higher than by the HCl–H2O–H2O2 system at the same concentration of HCl and H2O2. The role of TBP in enhancing the dissolution of Pd was discussed on the basis of the interaction between HCl and TBP. Compared to aqueous systems, mass transfer is important in the dissolution of Pd metal by the solvent leaching system. Optimum conditions for the complete dissolution of Pd were obtained.


Sign in / Sign up

Export Citation Format

Share Document