scholarly journals Bounding the Inefficiency of the Multiclass, Multicriteria C-Logit Stochastic User Equilibrium in a Transportation Network

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Lekai Yuan ◽  
Xi Zhang ◽  
Chaofeng Shi

We derive the exact inefficiency upper bounds of the multiclass C-Logit stochastic user equilibrium (CL-SUE) in a transportation network. All travelers are classified on the basis of different values of time (VOT) into M classes. The multiclass CL-SUE model gives a more realistic path choice probability in comparison with the logit-based stochastic user equilibrium model by considering the overlapping effects between paths. To find efficiency loss upper bounds of the multiclass CL-SUE, two equivalent variational inequalities for the multiclass CL-SUE model, i.e., time-based variational inequality (VI) and monetary-based VI, are formulated. We give four different methods to define the inefficiency of the multiclass CL-SUE, i.e., to compare multiclass CL-SUE with multiclass system optimum, or to compare multiclass CL-SUE with multiclass C-Logit stochastic system optimum (CL-SSO), under the time-based criterion and the monetary-based criterion, respectively. We further investigate the effects of various parameters which include the degree of path overlapping (the commonality factor), the network complexity, degree of traffic congestion, the VOT of user classes, the network familiarity, and the total demand on the inefficiency bounds.

2013 ◽  
Vol 779-780 ◽  
pp. 1044-1051
Author(s):  
Ming Hua Zeng ◽  
Xi Yan Huang ◽  
Ni Dong ◽  
Xiao Guang Yang

Inefficiency upper bounds are explored in stochastic traffic network. Equilibrium flow pattern therein is deduced by a central Stackelberg strategy and tax schemes imposed on each link.. The equivalent variational inequality (VI) for Logit-based stochastic user equilibrium (SUE) model is established and first used to obtain upper bounds on Stackelberg network inefficiency under the assumption of separable, nondecreasing, and convex link time function and of fixed network origin-destination (OD) demand. For typical Bureau of Public Roads (BPR) functions and its affine forms, the upper bounds of their inefficiency are investigated with some meaningful results.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Jie Ma ◽  
Hua Wang ◽  
Tianpei Tang

Along with the increasing number of the electric vehicles (EVs), an urban transportation network with a large number of EVs will come true in the near future. Since many countries encourage EVs due to their environmental-friendly benefits, the environmental costs of vehicles have attracted much attention in recent years. In this paper, besides the environmental costs, we take into account the issues of the stochastic user equilibrium (SUE), the elastic demand (ED), and the driving range of EVs in the network. We propose an SUE with ED (SUEED) problem to consider these issues in the urban transportation network with EVs. An SUEED model is developed. We also propose a method of successive average (MSA) to solve the SUEED problem. The computational feasibility of the algorithm is tested in a large-scale network. Through a comparison analysis, we show the benefits of introducing EVs into the urban transportation network in the SUEED circumstance. Moreover, a sensitivity analysis is conducted to reveal the potential values of EVs against the development of EVs. The results suggest that EVs may help to reduce both the travelers’ travel costs and the environmental costs of the entire network.


2020 ◽  
Vol 12 (13) ◽  
pp. 5433
Author(s):  
Xueyan Wei ◽  
Wei Wang ◽  
Weijie Yu ◽  
Xuedong Hua ◽  
Yun Xiang

As a countermeasure to urban exhaust pollution and traffic congestion, traffic restriction based on the last digit of license plate numbers has been widely introduced throughout the world. However, the effect of traffic restriction is weakened as it causes the long-distance detour of restricted travel modes and induces travel demand to shift to unrestricted travel modes. To consider detour and shift of traffic demand caused by traffic restriction, we propose a stochastic user equilibrium model under traffic rationing based on mode shifting rate and the corresponding solution algorithm. A case study is conducted to verify the effectiveness of proposed model and algorithm. Main findings of numerical experiments include: (1) Compared with traditional stochastic user equilibrium model, the temporary traffic demand shift caused by long-distance detour are well considered in proposed model. (2) Sensitivity analysis of the consumption parameters used in the proposed model shows that, the involved cost parameters have different effectiveness on the mode shifting rate. This study provides a reasonable relaxation of the intensively used assumption, that all restricted vehicles outside the restricted district will detour in traffic rationing research, and provides a reasonable approach to evaluate the change of link flow and the beneficial effectiveness on the sustainability of traffic environment after implementation of traffic restriction policy.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Huseyin Ceylan

This study proposes a traffic congestion minimization model in which the traffic signal setting optimization is performed through a combined simulation-optimization model. In this model, the TRANSYT traffic simulation software is combined with Differential Evolution (DE) optimization algorithm, which is based on the natural selection paradigm. In this context, the EQuilibrium Network Design (EQND) problem is formulated as a bilevel programming problem in which the upper level is the minimization of the total network performance index. In the lower level, the traffic assignment problem, which represents the route choice behavior of the road users, is solved using the Path Flow Estimator (PFE) as a stochastic user equilibrium assessment. The solution of the bilevel EQND problem is carried out by the proposed Differential Evolution and TRANSYT with PFE, the so-called DETRANSPFE model, on a well-known signal controlled test network. Performance of the proposed model is compared to that of two previous works where the EQND problem has been solved by Genetic-Algorithms- (GAs-) and Harmony-Search- (HS-) based models. Results show that the DETRANSPFE model outperforms the GA- and HS-based models in terms of the network performance index and the computational time required.


2012 ◽  
Vol 7 (12) ◽  
Author(s):  
Meng Meng ◽  
Chun-fu Shao ◽  
Cheng-xiang Zhuge ◽  
Jing-jing Zeng ◽  
Chun-jiao Dong

Sign in / Sign up

Export Citation Format

Share Document