scholarly journals The Origin and Evolution of life

2021 ◽  
Vol 4 (3) ◽  

This article is intended to provide definitions of the organic life form in absolute-geometric terms

2019 ◽  
Vol 18 (6) ◽  
pp. 575-589 ◽  
Author(s):  
Amanda L. S. Gomes ◽  
Bruno Becker-Kerber ◽  
Gabriel L. Osés ◽  
Gustavo Prado ◽  
Pedro Becker Kerber ◽  
...  

AbstractInvestigations into the existence of life in other parts of the cosmos find strong parallels with studies of the origin and evolution of life on our own planet. In this way, astrobiology and paleobiology are married by their common interest in disentangling the interconnections between life and the surrounding environment. In this way, a cross-point of both sciences is paleometry, which involves a myriad of imaging and geochemical techniques, usually non-destructive, applied to the investigation of the fossil record. In the last decades, paleometry has benefited from an unprecedented technological improvement, thus solving old questions and raising new ones. This advance has been paralleled by conceptual approaches and discoveries fuelled by technological evolution in astrobiological research. In this context, we present some new data and review recent advances on the employment of paleometry to investigations on paleobiology and astrobiology in Brazil in areas such biosignatures in Ediacaran microbial mats, biogenicity tests on enigmatic Ediacaran structures, research on Ediacaran metazoan biomineralization, fossil preservation in Cretaceous insects and fish, and finally the experimental study on the decay of fish to test the effect of distinct types of sediment on soft-tissue preservation, as well as the effects of early diagenesis on fish bone preservation.


Geology ◽  
2017 ◽  
Vol 45 (12) ◽  
pp. 1135-1138 ◽  
Author(s):  
Roy Price ◽  
Eric S. Boyd ◽  
Tori M. Hoehler ◽  
Laura M. Wehrmann ◽  
Erlendur Bogason ◽  
...  

2015 ◽  
Vol 112 (33) ◽  
pp. 10112-10119 ◽  
Author(s):  
Stuart A. West ◽  
Roberta M. Fisher ◽  
Andy Gardner ◽  
E. Toby Kiers

The evolution of life on earth has been driven by a small number of major evolutionary transitions. These transitions have been characterized by individuals that could previously replicate independently, cooperating to form a new, more complex life form. For example, archaea and eubacteria formed eukaryotic cells, and cells formed multicellular organisms. However, not all cooperative groups are en route to major transitions. How can we explain why major evolutionary transitions have or haven’t taken place on different branches of the tree of life? We break down major transitions into two steps: the formation of a cooperative group and the transformation of that group into an integrated entity. We show how these steps require cooperation, division of labor, communication, mutual dependence, and negligible within-group conflict. We find that certain ecological conditions and the ways in which groups form have played recurrent roles in driving multiple transitions. In contrast, we find that other factors have played relatively minor roles at many key points, such as within-group kin discrimination and mechanisms to actively repress competition. More generally, by identifying the small number of factors that have driven major transitions, we provide a simpler and more unified description of how life on earth has evolved.


Sign in / Sign up

Export Citation Format

Share Document