scholarly journals Changes in Synaptic Terminal Structure in Adolescent Rat During Pregnancy; The Action Potential Propagation and Synaptic Transmission

2020 ◽  
Vol 05 (03) ◽  

Synaptic plasticity is a biological system of specific pattern of synaptic activity result in changes in synaptic strength. This influence puberty, pregnancy hormones, sensory experiences, and brain disorders. Long-term synaptic plasticity is accompanied by protein synthesis and trafficking, leading to structural changes of the synapse. Increasing evidence connects the terminal synaptic changes with potential propagation in adolescent and pregnancy. We investigate on the synaptic structural plasticity, which has mainly been studied with in vivo two-photon laser scanning microscopy. We also discuss how a different type of synapses, the multi-contact synapses associated with pregnancy.

Synaptic plasticity is a biological system of specific pattern of synaptic activity result in changes in synaptic strength. This influence puberty, pregnancy hormones, sensory experiences, and brain disorders. Long-term synaptic plasticity is accompanied by protein synthesis and trafficking, leading to structural changes of the synapse. Increasing evidence connects the terminal synaptic changes with potential propagation in adolescent and pregnancy. We investigate on the synaptic structural plasticity, which has mainly been studied with in vivo two photon laser scanning microscopy. We also discuss how a different type of synapses, the multicontact synapses associated with pregnancy.


2018 ◽  
Vol 4 (2) ◽  
pp. 99-117 ◽  
Author(s):  
Yang Yang ◽  
Ju Lu ◽  
Yi Zuo

Synaptic plasticity is widely believed to be the cellular basis of learning and memory. It is influenced by various factors including development, sensory experiences, and brain disorders. Long-term synaptic plasticity is accompanied by protein synthesis and trafficking, leading to structural changes of the synapse. In this review, we focus on the synaptic structural plasticity, which has mainly been studied with in vivo two-photon laser scanning microscopy. We also discuss how a special type of synapses, the multi-contact synapses (including those formed by multi-synaptic boutons and multi-synaptic spines), are associated with experience and learning.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiang Lan Fan ◽  
Jose A. Rivera ◽  
Wei Sun ◽  
John Peterson ◽  
Henry Haeberle ◽  
...  

AbstractUnderstanding the structure and function of vasculature in the brain requires us to monitor distributed hemodynamics at high spatial and temporal resolution in three-dimensional (3D) volumes in vivo. Currently, a volumetric vasculature imaging method with sub-capillary spatial resolution and blood flow-resolving speed is lacking. Here, using two-photon laser scanning microscopy (TPLSM) with an axially extended Bessel focus, we capture volumetric hemodynamics in the awake mouse brain at a spatiotemporal resolution sufficient for measuring capillary size and blood flow. With Bessel TPLSM, the fluorescence signal of a vessel becomes proportional to its size, which enables convenient intensity-based analysis of vessel dilation and constriction dynamics in large volumes. We observe entrainment of vasodilation and vasoconstriction with pupil diameter and measure 3D blood flow at 99 volumes/second. Demonstrating high-throughput monitoring of hemodynamics in the awake brain, we expect Bessel TPLSM to make broad impacts on neurovasculature research.


2011 ◽  
Vol 106 (11) ◽  
pp. 939-946 ◽  
Author(s):  
Mirjam oude Egbrink ◽  
Viviane Heijnen ◽  
Remco Megens ◽  
Wim Engels ◽  
Hans Vink ◽  
...  

SummaryThe endothelial glycocalyx (EG), the luminal cover of endothelial cells, is considered to be atheroprotective. During atherogenesis, platelets adhere to the vessel wall, possibly triggered by simultaneous EG modulation. It was the objective of this study to investigate both EG thickness and platelet-vessel wall interactions during atherogenesis in the same experimental model. Intravital fluorescence microscopy was used to study platelet-vessel wall interactions in vivo in common carotid arteries and bifurcations of C57bl6/J (B6) and apolipoprotein E knock-out (ApoE-/-) mice (age 7 – 31 weeks). At the same locations, EG thickness was determined ex vivo using two-photon laser scanning microscopy. In ApoE-/- bifurcations the overall median level of adhesion was 48 platelets/mm2 (interquartile range: 16 – 80), which was significantly higher than in B6 bifurcations (0 (0 – 16), p = 0.001). This difference appeared to result from a significant age-dependent increase in ApoE-/- mice, while no such change was observed in B6 mice. At the same time, the EG in ApoE-/- bifurcations was significantly thinner than in B6 bifurcations (2.2 vs. 2.5 μm, respectively; p < 0.05). This resulted from the fact that in B6 bifurcations EG thickness increased with age (from 2.4 μm in young mice to 3.0 μm in aged ones), while in bifurcations of ApoE-/- mice this growth appeared to be absent (2.2 μm at all ages). During atherogenesis, platelet adhesion to the wall of the carotid artery bifurcation increases significantly. At the same location, EG growth with age is hampered. Therefore, glycocalyx-reinforcing strategies could possibly ameliorate atherosclerosis.


2017 ◽  
pp. 531-537 ◽  
Author(s):  
F. NADRIGNY ◽  
K. LE MEUR ◽  
E. D. SCHOMBURG ◽  
S. SAFAVI-ABBASI ◽  
P. DIBAJ

We developed appropriate surgical procedures for single and repetitive multi-photon imaging of spinal cord in vivo. By intravenous anesthesia, artificial ventilation and laminectomy, acute experiments were performed in the dorsal and lateral white matter. By volatile anesthesia and minimal-invasive surgery, chronic repetitive imaging up to 8 months was performed in the dorsal column through the window between two adjacent spines. Transgenic mouse technology enabled simultaneous imaging of labeled axons, astrocytes and microglia. Repetitive imaging showed positional shifts of microglia over time. These techniques serve for investigations of cellular dynamics and cell-cell interactions in intact and pathologically changed spinal tissue.


Nanoscale ◽  
2014 ◽  
Vol 6 (17) ◽  
pp. 10413-10422 ◽  
Author(s):  
Jelena Dimitrijevic ◽  
Lisa Krapf ◽  
Christopher Wolter ◽  
Christian Schmidtke ◽  
Jan-Philip Merkl ◽  
...  

CdSe/CdS-Quantum-dots-quantum-rods are encapsulated by PI-b-PEG shells and transferred into various aqueous media to study their stability and performance as probes for two-photon laser scanning microscopy.


Sign in / Sign up

Export Citation Format

Share Document