scholarly journals Comparative Analysis of Igg Responses to Recombinant Qβ Phage Displayed MSP3 and UB05 in Dual HIV-Malaria Infected Adults Living in areas differing in Malaria Transmission Intensities

2019 ◽  
Vol 4 (1) ◽  

Immunoglobulin G (IgG) specific responses against Plasmodium falciparum merozoite antigens such as the merozoite surface protein 3 (MSP3) and UB05 are known to play critical roles in parasiteamia control and protection from symptomatic illness. However when there is intense perennial malaria transmission coupled with concurrent infection with the human immunodeficiency virus type 1 (HIV), knowledge of IgG antibody response profiles is limited. In this study we assessed the impact of dual HIV-Malaria infections on IgG subclass responses to MSP3 (QβMSP3) and UB05 (QβUB05) in individuals living in two areas of Cameroon differing in malaria transmission intensity. We observed differences in antigen specific IgG and IgG subclass responses which were dependent upon the antigen type, malaria transmission intensity, HIV infection, malaria infection and dual HIV-malaria infections. Individuals living in high malaria transmission areas irrespective of HIV or malaria status had significantly higher IgG responses to both antigens (P=0.0001 for QβMSP3, P=0.0001 for QβUB05) than their counterpart from low transmission areas. When dual HIV-Malaria infection is considered significantly higher QβMSP3 specific IgG1 (P=0.0001) and IgG3 (P=0.04) responses in double negative individuals was associated with protection against malaria in low transmission areas. Increased QβUB05 specific IgG1 responses (P=0.0001) in double negative individuals were associated with protection in high transmission areas in contrast to significantly higher IgG3 responses to QβUB05 (P=0.0001) which were more relevant to protection in low malaria transmission areas in the same population. These findings imply that QβMSP3 might not be suitable as a standalone vaccine in areas differing in transmission intensity. However, antigenicity of UB05 most likely predicts immunity in both low and high transmission areas and could be used either alone or in combination with other antigens for vaccine studies in areas differing in transmission intensities. Understanding immune responses to QβUB05 and QβMSP3 could thus enable the development of efficacious vaccines or commensurate immunotherapeutic strategies suitable for areas differing in malaria transmission intensity.

2019 ◽  
Vol 4 (Suppl 3) ◽  
pp. A59.2-A59
Author(s):  
Godwin Nchinda ◽  
Abel Lissom ◽  
Herve Ouambo ◽  
Malachy I Okeke ◽  
Thibeau F Tchouangueu ◽  
...  

BackgroundImmunoglobulin G (IgG)-specific responses against Plasmodium falciparum merozoite antigens such as the merozoite surface protein 3 (MSP3) and UBO5 are known to play critical roles in parasitaemia control and protection from symptomatic illness. However, when there is intense perennial malaria transmission coupled with concurrent infection with the human immunodeficiency virus type 1 (HIV), knowledge of IgG antibody response profiles is limited.In this study we assessed the impact of dual HIV/malaria infections on IgG subclass responses to MSP3 (QβMSP3) and UBO5 (QβUB05) in individuals living in two areas of Cameroon differing in malaria transmission intensity.MethodsIgG and IgG subclass responses specific to either MSP3 or UBO5 were determined in plasma from study participant by ELISA. To improve reactivity with their respective antibodies the antigens were displayed upon the surface of the RNA coliphage Qβ.ResultsWe observed differences in antigen-specific IgG and IgG subclass responses which were dependent upon the antigen type, malaria transmission intensity, HIV infection, malaria infection and dual HIV/malaria infections. Individuals living in areas with high malaria transmission, had irrespective of HIV or malaria status significantly higher IgG responses to both antigens (p=0.0001 for QβMSP3, p=0.0001 for QβUB05) than their counterpart from areas with low transmission. When dual HIV/malaria infection is considered, significantly higher QβMSP3 specific IgG1 (p=0.0001) and IgG3 (p=0.04) responses in double-negative individuals was associated with protection against malaria in areas with low transmission. Superior QβUBO5 specific IgG1 responses (p=0.0001) in double-negative individuals were associated with protection in areas with high transmission in contrast to significantly higher IgG3 responses to QβUBO5 (p=0.0001) which were more relevant to protection in areas with low malaria transmission in the same population.ConclusionThus, understanding immune responses to QβUBO5 and QβMSP3 could facilitate the development of immunotherapeutic strategies suitable for areas differing in malaria transmission intensity.


2018 ◽  
Author(s):  
Abel Lissom ◽  
Herve F. Ouambo ◽  
Rosette Megnekou ◽  
Malachy I. Okeke ◽  
Loveline N. Ngu ◽  
...  

AbstractImmunoglobulin G specific responses againstPlasmodium falciparummerozoite antigens such as the merozoite surface protein 3 (MSP3) and UB05 are known to play critical roles in parasitemia control and protection from symptomatic illness. However when there is intense perennial malaria transmission coupled with concurrent infection with the human immunodeficiency virus type 1 (HIV), knowledge of IgG antibody response profiles is limited. In this study we assessed the impact of dual HIV-Malaria infections on IgG subclass responses to MSP3 (QβMSP3) and UB05 (QβUB05) in individuals living in two areas of Cameroon differing in transmission intensity. We observed differences in antigen specific IgG and IgG subclass responses which was dependent upon the antigen type, malaria transmission intensity, HIV infection, malaria infection and dual HIV-malaria infections. Individuals living in high malaria transmission areas irrespective of HIV or malaria status had significantly higher IgG responses to both antigens (P=0.0001 for QβMSP3, P=0.0001 for QβUB05) than their counterpart from low transmission areas. When dual HIV-Malaria infection is considered significantly higher QβMSP3 specific IgG1 (P=0.0001) and IgG3 (P=0.04) responses in double negative individuals was associated with protection against malaria in low transmission areas. Superior QβUBO5 specific IgG1 responses (P=0.0001) in double negative individuals were associated with protection in high transmission areas in contrast to significantly higher IgG3 responses to QβUB05 (P=0.0001) which were more relevant to protection in low malaria transmission areas in the same population. Thus, understanding immune responses to QβUB05 and QβMSP3 could facilitate the development of immunotherapeutic strategies suitable for areas differing in malaria transmission intensity.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Alex K. Musiime ◽  
David L. Smith ◽  
Maxwell Kilama ◽  
John Rek ◽  
Emmanuel Arinaitwe ◽  
...  

Abstract Background Long-lasting insecticidal nets (LLINs) and indoor residual spraying of insecticide (IRS) are widely recommended for the prevention of malaria in endemic regions. Data from human landing catches provide information on the impact of vector control on vector populations. Here, malaria transmission indoors and outdoors, before and after mass deployment of LLINs and IRS in Uganda was compared. Methods The study took place in Tororo district, a historically high transmission area where universal LLIN distribution was conducted in November 2013 and May 2017 and 6 rounds of IRS implemented from December 2014 to July 2018. Human landing catches were performed in 8 houses monthly from October 2011 to September 2012 (pre-intervention period) and every 4 weeks from November 2017 to October 2018 (post-intervention period). Mosquitoes were collected outdoors from 18:00 to 22:00 h and indoors from 18:00 to 06:00 h. Female Anopheles were tested for the presence of Plasmodium falciparum sporozoites and species identification performed using gross dissection and polymerase chain reaction (PCR). Results The interventions were associated with a decline in human biting rate from 19.6 to 2.3 female Anopheles mosquitoes per house per night (p < 0.001) and annual entomological inoculation rate from 129 to 0 infective bites per person per year (p < 0.001). The proportion of mosquitoes collected outdoors increased from 11.6 to 49.4% (p < 0.001). Prior to the interventions the predominant species was Anopheles gambiae sensu stricto (s.s.), which comprised an estimated 76.7% of mosquitoes. Following the interventions, the predominant species was Anopheles arabiensis, which comprised 99.5% of mosquitoes, with almost complete elimination of An. gambiae s.s. (0.5%). Conclusions Mass distribution of LLINs and 6 rounds of IRS dramatically decreased vector density and sporozoite rate resulting in a marked reduction in malaria transmission intensity in a historically high transmission site in Uganda. These changes were accompanied by a shift in vector species from An. gambiae s.s. to An. arabiensis and a relative increase in outdoor biting.


2019 ◽  
Vol 4 (Suppl 3) ◽  
pp. A53.2-A53
Author(s):  
Kingsley Badu

BackgroundAs malaria transmission intensity declines, the heterogeneity in infectious burden becomes pronounced. There is thus the need for more sensitive tools to identify micro-geographic areas of higher risk for targeted interventions. We sought to evaluate several immunogenic peptides of P. falciparum, secreted ookinete and sporozoite proteins (PSOP24) and possibly validate specific short sequence immunogenic peptides as an infectious bite marker for assessing malaria transmission intensity and dynamics.MethodsWe conducted four cross-sectional serological and parasitological surveys within one peri-urban and one rural community about 3 km apart, in South-western Ghana. The field surveys were conducted from November 2012 to July 2014 across dry and rainy seasons. Several bioinformatics models were used to predict the immunogenic epitopes of PSOP24 peptides. Total IgG antibody response were determined for three most promising peptides (PSOP24–374, PSOP24–375 and PSOP24–377), together with MSP119, CSP and salivary gland antigen. Alongside we determined parasite prevalence and density as well as the entomological inoculation rates.ResultsPeptide PSOP24-377 showed seasonal variation with a twofold increase in IgG response in the high-transmission rainy season. This collaborates with the twofold increase in IgG response to the mosquito salivary antigen gSG6-P1. Also, PSOP24-377 was able to show a subtle difference from Ayeigbekorpe to Odumase during the dry season and a high sero-prevalence between the two communities during the rainy season. This was in contrast with gSG6-P1 because, while PSOP24-377 measures sero-response to infectious bites, gSG6-P1 measure responses to only vector exposure. The immune response variation determined by PSOP24-377 correlated with parasite prevalence and the entomological inoculation rates.ConclusionThe preliminary data points to the potential of PSOP24-377 as an infectious bite marker. This may be exploited as a routine surveillance tool for monitoring malaria transmission at the community level.


2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Henrietta E. Mensah-Brown ◽  
James Abugri ◽  
Kwaku P. Asante ◽  
Duah Dwomoh ◽  
David Dosoo ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Toussaint Rouamba ◽  
Sékou Samadoulougou ◽  
Mady Ouédraogo ◽  
Hervé Hien ◽  
Halidou Tinto ◽  
...  

Abstract Background Malaria in endemic countries is often asymptomatic during pregnancy, but it has substantial consequences for both the mother and her unborn baby. During pregnancy, anaemia is an important consequence of malaria infection. In Burkina Faso, the intensity of malaria varies according to the season, albeit the prevalence of malaria and anaemia as well as their risk factors, during high and low malaria transmission seasons is underexplored at the household level. Methods Data of 1751 pregnant women from October 2013 to March 2014 and 1931 pregnant women from April 2017 to June 2017 were drawn from two cross-sectional household surveys conducted in 24 health districts of Burkina Faso. Pregnant women were tested for malaria in their household after consenting. Asymptomatic carriage was defined as a positive result from malaria rapid diagnostic tests in the absence of clinical symptoms of malaria. Anaemia was defined as haemoglobin level less than 11 g/dL in the first and third trimester and less than 10.5 g/dL in the second trimester of pregnancy. Results Prevalence of asymptomatic malaria in pregnancy was estimated at 23.9% (95% CI 20.2–28.0) during the high transmission season (October–November) in 2013. During the low transmission season, it was 12.7% (95% CI 10.9–14.7) between December and March in 2013–2014 and halved (6.4%; 95% CI 5.3–7.6) between April and June 2017. Anaemia prevalence was estimated at 59.4% (95% CI 54.8–63.8) during the high transmission season in 2013. During the low transmission season, it was 50.6% (95% CI 47.7–53.4) between December and March 2013–2014 and 65.0% (95% CI 62.8–67.2) between April and June, 2017. Conclusion This study revealed that the prevalence of malaria asymptomatic carriage and anaemia among pregnant women at the community level remain high throughout the year. Thus, more efforts are needed to increase prevention measures such as IPTp–SP coverage in order to reduce anaemia and contribute to preventing low birth weight and poor pregnancy outcomes.


2010 ◽  
Vol 47 (4) ◽  
pp. 618-624 ◽  
Author(s):  
Ilboudo-Sanogo Edith ◽  
Tiono B. Alfred ◽  
Sagnon N′falé ◽  
Cuzin Ouattara Nadine ◽  
Nébié Issa ◽  
...  

Abstract To determine the relationship between malaria transmission intensity, clinical malaria, immune response, plasmodic index, and to furthermore characterize a malaria vaccine trial site for potential malaria vaccines candidate testing, a study was conducted in Tensobtenga and Balonguen, two villages in Burkina Faso characterized by different malaria transmission levels. The study villages are located in a Sudan savanna area. Malaria transmission is seasonal and peaks in September in these villages. Tensobtenga and Balonguen are comparables in all aspects, except the presence of an artificial lake and wetlands in Tensobtenga. The mosquitoes sampling sites were randomly selected, taking into consideration the number of potential breeding sites, and the number of households in each village. Three times a week during 12 mo mosquitoes were collected by the Center for Disease Control and Prevention light traps in sentinel sites. To assess the infectivity the mosquitoes double ELISAs tests were performed on thoraces of female Anopheles gambiae s.l. (Giles) and Anopheles funestus. A total of 54,392 female Anopheles, representing 92.71% of the total mosquitoes, were collected. The peaks of aggressiveness because of either An. gambiae s.l. or An. funestus were observed in September in each of the villages. However, these peaks were lower in Balonguen compared with Tensobtenga. Malaria cumulative aggressiveness and transmission intensity because of both species peaked in September in each of the two villages, with lower values in Balonguen in comparison to Tensobtenga. From February to May, malaria transmission intensity is negligible in Balonguen and &lt;1 bite/person/mo is observed in Tensobtenga. These results have confirmed the marked seasonality of malaria transmission in the study area.


Sign in / Sign up

Export Citation Format

Share Document