Case Study of the Design for Reliability for Remanufactured Military Power Supply

2020 ◽  
Vol 20 (3) ◽  
pp. 209-215
Author(s):  
Hyun-Seok Song ◽  
Min-Ho Son ◽  
Sung-Ju Yoo ◽  
Do-Hyun Jung ◽  
Boo-Hee Park
Author(s):  
A. Cano ◽  
Paul Arévalo ◽  
F. Jurado

This research compared different sizing methods to improve the current autonomous hybrid system in the Galapagos Islands in 2031, analyzing the loss of power supply probability (LPSP).


2021 ◽  
Vol 13 (11) ◽  
pp. 6304
Author(s):  
Raluca-Andreea Felseghi ◽  
Ioan Așchilean ◽  
Nicoleta Cobîrzan ◽  
Andrei Mircea Bolboacă ◽  
Maria Simona Raboaca

Alternative energy resources have a significant function in the performance and decarbonization of power engendering schemes in the building application domain. Additionally, “green buildings” play a special role in reducing energy consumption and minimizing CO2 emissions in the building sector. This research article analyzes the performance of alternative primary energy sources (sun and hydrogen) integrated into a hybrid photovoltaic panel/fuel cell system, and their optimal synergy to provide green energy for a green building. The study addresses the future hydrogen-based economy, which involves the supply of hydrogen as the fuel needed to provide fuel cell energy through a power distribution infrastructure. The objective of this research is to use fuel cells in this field and to investigate their use as a green building energy supply through a hybrid electricity generation system, which also uses photovoltaic panels to convert solar energy. The fuel cell hydrogen is supplied through a distribution network in which hydrogen production is outsourced and independent of the power generation system. The case study creates virtual operating conditions for this type of hybrid energy system and simulates its operation over a one-year period. The goal is to demonstrate the role and utility of fuel cells in virtual conditions by analyzing energy and economic performance indicators, as well as carbon dioxide emissions. The case study analyzes the optimal synergy between photovoltaic panels and fuel cells for the power supply of a green building. In the simulation, an optimally configured hybrid system supplies 100% of the energy to the green building while generating carbon dioxide emissions equal to 11.72% of the average value calculated for a conventional energy system providing similar energy to a standard residential building. Photovoltaic panels account for 32% of the required annual electricity production, and the fuel cells generate 68% of the total annual energy output of the system.


2013 ◽  
Vol 310 ◽  
pp. 383-386
Author(s):  
Pu Xie ◽  
Xin Huang ◽  
Su Ning Zhang

Indirect lightning over-voltage is one of the main ways to cause damage to the military power supply. Firstly, the waveform analog and destructive analysis of the lightning current is carried out. And then, the principles and calculation model of indirect lightning over-voltage are studied. According to dipole model the electromagnetic filed distribution laws at the discharge instantly time are acquired. Through the space and time-discrete processing, the numerical solution of electric and magnetic fields is forwarded. Finally, by a large number of simulation tests, the influence laws of lightning location, line length, lightning return stroke speed and termination resistor effect on induced overvoltage is discovered, which provides quantitative indicators to the lightning protection design of the military power supply.


Sign in / Sign up

Export Citation Format

Share Document