scholarly journals Modeling the disappearance of equatorial plasma bubble by nighttime medium-scale traveling ionospheric disturbances

2021 ◽  
Vol 32 (2) ◽  
pp. 217-228
Author(s):  
Min-Yang Chou ◽  
Charles C. H. Lin ◽  
Joseph D. Huba
2021 ◽  
Author(s):  
Min-Yang Chou ◽  
Charles C. H. Lin ◽  
Joseph D. Huba

Abstract The Naval Research Laboratory first-principles ionosphere model SAMI3/ESF is performed to study the interaction between the nighttime medium-scale traveling ionospheric disturbances (MSTIDs) and equatorial plasma bubbles (EPBs). The synthetic dynamo currents are imposed into the potential equation to induce polarization electric fields for generating the MSTIDs. Simulations demonstrate that the MSTIDs can inhibit the upward growth of EPBs; however, MSTIDs alone are insufficient to explain the disappearance of EPBs. We found that the meridional winds likely contribute to the disappearance of MSTIDs by reducing the background electron density and polarization electric fields within the EPBs. Then, the MSTIDs transport plasma to fill the EPB depletions up via E × B drifts. Both MSTIDs and meridional winds are necessary to comprehend the underlying mechanism of EPB disappearance. We also found that the zonal and vertical E × B drifts within the MSTIDs affect the morphology of EPBs, leading to a reverse-C shape structure.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Pin-Hsuan Cheng ◽  
Charles Lin ◽  
Yuichi Otsuka ◽  
Hanli Liu ◽  
Panthalingal Krishanunni Rajesh ◽  
...  

AbstractThis study investigates the medium-scale traveling ionospheric disturbances (MSTIDs) statistically at the low-latitude equatorial ionization anomaly (EIA) region in the northern hemisphere. We apply the automatic detection algorithm including the three-dimensional fast Fourier transform (3-D FFT) and support vector machine (SVM) on total electron content (TEC) observations, derived from a network of ground-based global navigation satellite system (GNSS) receivers in Taiwan (14.5° N geomagnetic latitude; 32.5° inclination), to identify MSTID from other waves or irregularity features. The obtained results are analyzed statistically to examine the behavior of low-latitude MSTIDs. Statistical results indicate the following characteristics. First, the southward (equatorward) MSTIDs are observed almost every day during 0800–2100 LT in Spring and Winter. At midnight, southward MSTIDs are more discernible in Summer and majority of them are propagating from Japan to Taiwan. Second, northward (poleward) MSTIDs are more frequently detected during 1200–2100 LT in Spring and Summer with the secondary peak of occurrence between day of year (DOY) 100–140 during 0000–0300 LT. The characteristics of the MSTIDs are interpreted with additional observations from radio occultation (RO) soundings of FORMOSAT-3/COSMIC as well as modeled atmospheric waves from the high-resolution Whole Atmosphere Community Climate Model (WACCM) suggesting that the nighttime MSTIDs in Summer is likely connected to the atmospheric gravity waves (AGWs).


2020 ◽  
Author(s):  
Temitope Seun Oluwadare ◽  
Norbert Jakowski ◽  
Cesar E. Valladares ◽  
Andrew Oke-Ovie Akala ◽  
Oladipo E. Abe ◽  
...  

Abstract We present for the first time the climatology of medium-scale traveling ionospheric disturbances (MSTIDs) by using Global Positioning System (GPS) receiver networks on geomagnetically quiet days (Kp ≤ 3) over the North African region during 2008-2016. The MSTIDs appear frequently as oscillating waves or wave-like structures in electron density induced by the passage of Atmospheric Gravity Waves (AGW) propagating through the neutral atmosphere and consequently, causing fluctuation in the ionospheric Total Electron Content (TEC). The TEC perturbations (dTEC) data are derived from dual frequency GPS-measurements. We have statistically analyzed the MSTIDs characteristics, occurrence rate, seasonal behavior as well as the interannual dependence. The results show a local and seasonal dependence of nighttime and daytime MSTIDs. The propagation direction is predominantly towards the South (equatorward), MSTIDs event period is (12 ≤ period ≤ 53 mins), and dominant amplitude (0.08 ≤ amp ≤ ~1.5 TECU), with a propagation velocity higher at daytime than nighttime. The amplitudes of the MSTIDs increase with solar activity. The local MSTIDs Spatio-temporal heat reveals variability in disturbance occurrence time, but seems to be dominant within the hours of (Northwest: 1200–1600 LT) and (Northeast: 1000–1400 LT) in December solstice during daytime, and around (NW: 2100–0200 LT) and (NE: 1900–0200 LT) in June solstice, but get extended to March equinox during solar maximum (2014) during the nighttime. The time series of MSTIDs regional distribution map is also generated. Atmospheric gravity waves (AGW) seems to be responsible for the daytime MSTIDs occurrence.


Sign in / Sign up

Export Citation Format

Share Document