scholarly journals Statistical study of medium-scale traveling ionospheric disturbances in low-latitude ionosphere using an automatic algorithm

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Pin-Hsuan Cheng ◽  
Charles Lin ◽  
Yuichi Otsuka ◽  
Hanli Liu ◽  
Panthalingal Krishanunni Rajesh ◽  
...  

AbstractThis study investigates the medium-scale traveling ionospheric disturbances (MSTIDs) statistically at the low-latitude equatorial ionization anomaly (EIA) region in the northern hemisphere. We apply the automatic detection algorithm including the three-dimensional fast Fourier transform (3-D FFT) and support vector machine (SVM) on total electron content (TEC) observations, derived from a network of ground-based global navigation satellite system (GNSS) receivers in Taiwan (14.5° N geomagnetic latitude; 32.5° inclination), to identify MSTID from other waves or irregularity features. The obtained results are analyzed statistically to examine the behavior of low-latitude MSTIDs. Statistical results indicate the following characteristics. First, the southward (equatorward) MSTIDs are observed almost every day during 0800–2100 LT in Spring and Winter. At midnight, southward MSTIDs are more discernible in Summer and majority of them are propagating from Japan to Taiwan. Second, northward (poleward) MSTIDs are more frequently detected during 1200–2100 LT in Spring and Summer with the secondary peak of occurrence between day of year (DOY) 100–140 during 0000–0300 LT. The characteristics of the MSTIDs are interpreted with additional observations from radio occultation (RO) soundings of FORMOSAT-3/COSMIC as well as modeled atmospheric waves from the high-resolution Whole Atmosphere Community Climate Model (WACCM) suggesting that the nighttime MSTIDs in Summer is likely connected to the atmospheric gravity waves (AGWs).

2020 ◽  
Author(s):  
PinHsuan Cheng ◽  
Charles Lin ◽  
Yuichi Otsuka ◽  
Hanli Liu ◽  
Panthalingal Krishanunni Rajesh ◽  
...  

Abstract This study investigates the medium–scale traveling ionospheric disturbances (MSTIDs) statistically at the low–latitude equatorial ionization anomaly (EIA) region in the northern hemisphere. We apply the automatic detection algorithm including the three-dimensional fast Fourier transform (3-D FFT) and support vector machine (SVM) on total electron content (TEC) observations, derived from a network of ground-based global navigation satellite system (GNSS) receivers in Taiwan (14.5°N geomagnetic latitude; 32.5° inclination), to identify MSTID from other waves or irregularity features. The obtained results are analyzed statistically to examine the behavior of low-latitude MSTIDs. Statistical results indicate the following characteristics. First, the southward (equatorward) MSTIDs are observed almost every day during 0800-2100 LT in Spring and Winter. At midnight, southward MSTIDs are more discernible in Summer and majority of them are propagating from Japan to Taiwan. Second, northward (poleward) MSTIDs are more frequently detected during 1200-2100 LT in Spring and Summer with the secondary peak of occurrence between day of year (DOY) 100-140. The characteristics of the MSTIDs are interpreted with additional observations from radio occultation (RO) soundings of FORMOSAT-3/COSMIC as well as modeled atmospheric waves from the high–resolution Whole Atmosphere Community Climate Model (WACCM) suggesting that the nighttime MSTIDs in Summer is likely connected to the atmospheric gravity waves (AGWs).


2013 ◽  
Vol 31 (2) ◽  
pp. 163-172 ◽  
Author(s):  
Y. Otsuka ◽  
K. Suzuki ◽  
S. Nakagawa ◽  
M. Nishioka ◽  
K. Shiokawa ◽  
...  

Abstract. Two-dimensional structures of medium-scale traveling ionospheric disturbances (MSTIDs) over Europe have been revealed, for the first time, by using maps of the total electron content (TEC) obtained from more than 800 GPS receivers of the European GPS receiver networks. From statistical analysis of the TEC maps obtained 2008, we have found that the observed MSTIDs can be categorized into two groups: daytime MSTID and nighttime MSTID. The daytime MSTID frequently occurs in winter. Its maximum occurrence rate in monthly and hourly bin exceeds 70% at lower latitudes over Europe, whereas it is approximately 45% at higher latitudes. Since most of the daytime MSTIDs propagate southward, we speculate that they could be caused by atmospheric gravity waves in the thermosphere. The nighttime MSTIDs also frequently occur in winter but most of them propagate southwestward, in a direction consistent with the theory that polarization electric fields play an important role in generating the nighttime MSTIDs. The nighttime MSTID occurrence rate shows distinct latitudinal difference: The maximum of the occurrence rate in monthly and hourly bin is approximately 50% at lower latitudes in Europe, whereas the nighttime MSTID was rarely observed at higher latitudes. We have performed model calculations of the plasma density perturbations caused by a gravity wave and an oscillating electric field to reproduce the daytime and nighttime MSTIDs, respectively. We find that TEC perturbations caused by gravity waves do not show dip angle dependencies, while those caused by the oscillating electric field have a larger amplitude at lower latitudes. These dip angle dependencies of the TEC perturbation amplitude could contribute to the latitudinal variation of the MSTID occurrence rate. Comparing with previous studies, we discuss the longitudinal difference of the nighttime MSTID occurrence rate, along with the E- and F-region coupling processes. The seasonal variation, of the nighttime MSTID occurrence rate in Europe, is not consistent with the theory that the longitudinal and seasonal variations of the nighttime MSTID occurrence could be attributed to those of the Es layer occurrence.


2020 ◽  
Vol 10 ◽  
pp. 29
Author(s):  
Cristhian Camilo Timoté ◽  
José Miguel Juan ◽  
Jaume Sanz ◽  
Guillermo González-Casado ◽  
Adrià Rovira-García ◽  
...  

Medium-scale traveling ionospheric disturbances (MSTIDs) are fluctuations in the plasma density that propagate through the upper layer of the atmosphere at velocities of approximately 100 m/s and periods reaching some tens of minutes. Due to their wavelengths, MSTIDs can degrade the performance of differential positioning techniques, such as real-time kinematics (RTK) or network-RTK (NRTK). This paper defines a novel methodology as a tool for relating the errors in NRTK positioning based on an MSTIDs indicator using the second difference in time of the slant total electron content (STEC). The proposed methodology performs integer ambiguity resolution (IAR) on the undifferenced measurements instead of using double-differenced carrier-phase measurements, as it is usual in RTK and NRTK. Statistical tests are applied to evaluate the degradation in the position errors caused by the impacts of MSTIDs on RTK and NRTK positioning over a data set spanning one year gathered from the CATNET network; a dual-frequency network of fixed permanent GNSS receivers located at the mid-latitudes of northeastern Spain. With the development of the proposed methodology for measuring the position degradation, another results of the present research are the establishment of thresholds for the proposed MSTIDs index, which can be used to monitor the positioning solution and to warn users when the measurements are affected by MSTIDs events, relating the position error to MSTIDs that affect not only the user receivers but also of the reference receivers within the network.


2021 ◽  
Vol 13 (5) ◽  
pp. 945
Author(s):  
Zhongxin Deng ◽  
Rui Wang ◽  
Yi Liu ◽  
Tong Xu ◽  
Zhuangkai Wang ◽  
...  

In the current study, we investigated the mechanism of medium-scale traveling ionospheric disturbance (MSTID) triggering spread-F in the low latitude ionosphere using ionosonde observation and Global Navigation Satellite System-Total Electron Content (GNSS-TEC) measurement. We use a series of morphological processing techniques applied to ionograms to retrieve the O-wave traces automatically. The maximum entropy method (MEM) was also utilized to obtain the propagation parameters of MSTID. Although it is widely acknowledged that MSTID is normally accompanied by polarization electric fields which can trigger Rayleigh–Taylor (RT) instability and consequently excite spread-F, our statistical analysis of 13 months of MSTID and spread-F occurrence showed that there is an inverse seasonal occurrence rate between MSTID and spread-F. Thus, we assert that only MSTID with certain properties can trigger spread-F occurrence. We also note that the MSTID at night has a high possibility to trigger spread-F. We assume that this tendency is consistent with the fact that the polarization electric field caused by MSTID is generally the main source of post-midnight F-layer instability. Moreover, after thorough investigation over the azimuth, phase speed, main frequency, and wave number over the South America region, we found that the spread-F has a tendency to be triggered by nighttime MSTID, which is generally characterized by larger ΔTEC amplitudes.


2018 ◽  
Vol 14 (2) ◽  
pp. 111
Author(s):  
Sri Ekawati

The solar flare is potential to cause sudden increase of the electron density in the ionosphere,particularly in D layer, known as Sudden Ionospheric Disturbances (SID). This increase of electron density occurs not only in the ionospheric D layer but also in the ionospheric E and F layers. Total Electron Content (TEC) measured by GPS is the total number of electrons from D to F layer. The aim of this research is to study the effect of solar flare x-rays, greater than M5 class in 2015, on ionospheric TEC over Bandung and Manado. This paper presents the preliminary result of ionospheric TEC response on solar flare occurrence over Indonesia. The ionospheric TEC data is derived from GPS Ionospheric Scintillation and TEC Monitor (GISTM) receiver at Bandung (-6.90o S;107.6o E geomagnetic latitude 16.54o S) and Manado (1.48o N; 124.85o E geomagnetic latitude 7.7o S). The solar x-rays flares classes analyzed where M5.1 on 10 March 2015 and M7.9 on 25 June 2015. Slant TEC (STEC) values where calculated to obtain Vertical TEC (VTEC) and the Differential of the VTEC (DVTEC) per PRN satellite for further analysis. The results showed that immediately after the flare, there where sudden enhancement of the VTEC and the DVTEC (over Bandung and Manado) at the same time. The time delay of ionospheric TEC response on M5.1 flare was approximately 2 minutes, then the VTEC increased by 0.5 TECU and the DVTEC rose sharply by 0.5 – 0.6 TECU/minutes. Moreover, the time delay after the M7.9 flare was approximately 11 minutes, then the VTEC increased by 1 TECU and the DVTEC rose sharply by 0.6 – 0.9 TECU/minutes. ABSTRAK Flare matahari berpotensi meningkatkan kerapatan elektron ionosfer secara mendadak, khususnya di lapisan D, yang dikenal sebagai Sudden Ionospheric Disturbances (SID). Peningkatan kerapatan elektron tersebut terjadi tidak hanya di lapisan D, tetapi juga di lapisan E dan F ionosfer. Total Electron Content (TEC) dari GPS merupakan jumlah banyaknya elektron total dari lapisan D sampai lapisan F. Penelitian ini bertujuan mengetahui efek flare, yang lebih besar dari kelas M5 tahun 2015, terhadap TEC ionosfer di atas Bandung dan Manado. Makalah ini merupakan hasil awal dari respon TEC ionosfer terhadap fenomena flare di atas Indonesia. Data TEC ionosfer diperoleh dari penerima GPS Ionospheric Scintillation and TEC Monitor (GISTM) di Bandung (-6,90o S; 107,60o E lintang geomagnet 16,54o LS) dan Manado (1,48oLU;124,85oBT lintang geomagnet 7,7o LS) dikaitkan dengan kejadian flare kelas M5.1 pada tanggal 10 Maret 2015 dan kelas M7.9 pada tanggal 25 Juni 2015. Nilai Slant TEC (STEC) dihitung untuk memperoleh nilai Vertical TEC (VTEC), kemudian nilai Differential of VTEC (DVTEC) per PRN satelit diperoleh untuk analisis selanjutnya. Hasil menunjukkan segera setelah terjadi flare, terjadi peningkatan VTEC dan DVTEC (di atas Bandung dan Manado) secara mendadak pada waktu yang sama. Waktu tunda dari respon TEC ionosfer setelah terjadi flare M5.1 adalah sekitar 2 menit, kemudian VTEC meningkat sebesar 0,5 TECU dan DVTEC meningkat secara tajam sebesar 0,5 – 0,6 TECU/menit. Sedangkan, waktu tunda setelah terjadi flare M7.9 adalah 11 menit, kemudian VTEC meningkat sebesar 1 TECU dan DVTEC meningkat secara tajam sebesar 0,6 – 0,9 TECU/menit.


2004 ◽  
Vol 22 (1) ◽  
pp. 47-62 ◽  
Author(s):  
E. L. Afraimovich ◽  
E. I. Astafieva ◽  
S. V. Voyeikov

Abstract. We investigate an unusual class of medium-scale traveling ionospheric disturbances of the nonwave type, isolated ionospheric disturbances (IIDs) that manifest themselves in total electron content (TEC) variations in the form of single aperiodic negative TEC disturbances of a duration of about 10min (the total electron content spikes, TECS). The data were obtained using the technology of global detection of ionospheric disturbances using measurements of TEC variations from a global network of receivers of the GPS. For the first time, we present the TECS morphology for 170 days in 1998–2001. The total number of TEC series, with a duration of each series of about 2.3h (2h18m), exceeded 850000. It was found that TECS are observed in no more than 1–2% of the total number of TEC series mainly in the nighttime in the spring and autumn periods. The TECS amplitude exceeds the mean value of the "background" TEC variation amplitude by a factor of 5–10 as a minimum. TECS represent a local phenomenon with a typical radius of spatial correlation not larger than 500km. The IID-induced TEC variations are similar in their amplitude, form and duration to the TEC response to shock-acoustic waves (SAW) generated during rocket launchings and earthquakes. However, the IID propagation velocity is less than the SAW velocity (800–1000m/s) and are most likely to correspond to the velocity of background medium-scale acoustic-gravity waves, on the order of 100–200m/s. Key words. Ionosphere (ionospheric irregularities, instruments and techniques) - Radio science (ionospheric propagation)


2001 ◽  
Vol 19 (7) ◽  
pp. 723-731 ◽  
Author(s):  
E. L. Afraimovich ◽  
E. A. Kosogorov ◽  
O. S. Lesyuta ◽  
I. I. Ushakov ◽  
A. F. Yakovets

Abstract. In this paper an attempt is made to verify the hypothesis of the role of geomagnetic disturbances as a factor in determining the intensity of traveling ionospheric disturbances (TIDs). To improve the statistical validity of the data, we have used the method involving a global spatial averaging of disturbance spectra of the total electron content (TEC). To characterize the TID intensity quantitatively, we suggest that a new global index of the degree of disturbance should be used, which is equal to the mean value of the rms variations in TEC within the selected range of spectral periods (of 20– 60 min, in the present case). The analysis has been made for a set of 100 to 300 GPS stations for 10 days with a different level of geomagnetic activity (Dst from 0 to –350 nT; the Kp index from 3 to 9). It was found that power spectra of daytime TEC variations in the range of 20–60 min periods under quiet conditions have a power-law form with the slope index k = –2.5. With an increase in the level of magnetic disturbance, there is an increase in the total intensity of TIDs, with a concurrent kink of the spectrum caused by an increase in oscillation intensity in the range of 20–60 min. The TEC variation amplitude is found to be smaller at night than during the daytime, and the spectrum decreases in slope, which is indicative of a disproportionate increase in the amplitude of the small-scale part of the spectrum. It was found that an increase in the level of geomagnetic activity is accompanied by an increase in the total intensity of TEC; however, it does not correlate with the absolute level of Dst, but rather with the value of the time derivative of Dst (a maximum correlation coefficient reaches –0.94). The delay of the TID response of the order of 2 hours is consistent with the view that TIDs are generated in auroral regions, and propagate equatorward with the velocity of about 300–400 m/s.Key words. Ionosphere (ionospheric disturbances; auroral ionosphere; equatorial ionopshere)


Sign in / Sign up

Export Citation Format

Share Document