scholarly journals A Programmable Proton Exchange Membrane Fuel Cell Emulator Based on a DC-DC Synchronous Buck Converter

2020 ◽  
Vol 2 (2) ◽  
pp. 103-110

In the development of fuel cell (FC) systems and related control technologies, it is convenient to employ FC emulators instead of using real FC systems for the testing of various FC characteristic parameters and operating conditions. This paper proposes a low-cost, fast-response, and programmable proton exchange membrane FC (PEMFC) hardware emulator based on a two-switch DC-DC synchronous buck converter and a digital signal processor (DSP) acting as a kernel controller. The V-I characteristics and control signals of the emulated PEMFC are determined through system analysis, modeling, and digitalization of the PEMFC model. The developed PEMFC model is then used to construct a programmable user-interface module through C programming. The programmable digital module can be directly embedded into the DSP for simulation studies and experimental tests on various hardware integrated implementations of FCs. Results obtained from simulations and hardware tests are in good consistent with each other and both prove the correctness and effectiveness of the developed converter based PEMFC emulator.

Author(s):  
Himadry Shekhar Das ◽  
Chee Wei Tan ◽  
AHM Yatim ◽  
Nik Din Bin Muhamad

Alternative energy technologies are being popular for power generation applications nowadays. Among others, Fuel cell (FC) technology is quite popular. However, the FC unit is costly and vulnerable to any disturbances in input parameters. Thus, to perform research and experimentation, Fuel cell emulators (FCE) can be useful. FCEs can replicate actual FC behavior in different operating conditions. Thus, by using it the application area can be determined. In this study, a FCE system is modelled using MATLAB/Simulink®. The FCE system consists of a buck DC-DC converter and a proportional integral (PI) based controller incorporating an electrochemical model of proton exchange membrane fuel cell (PEMFC). The PEMFC model is used to generate reference voltage of the controller which takes the load current as a requirement. The characteristics are compared with Ballard Mark V 5kW PEMFC stack specifications obtained from the datasheet. The results show that the FCE system is a suitable replacement of real PEMFC stack and can be used for research and development purpose.


2021 ◽  
Vol 12 (3) ◽  
pp. 106
Author(s):  
Fengxiang Chen ◽  
Liming Zhang ◽  
Jieran Jiao

The durability and output performance of a fuel cell is highly influenced by the internal humidity, while in most developed models of open-cathode proton exchange membrane fuel cells (OC-PEMFC) the internal water content is viewed as a fixed value. Based on mass and energy conservation law, mass transport theory and electrochemistry principles, the model of humidity dynamics for OC-PEMFC is established in Simulink® environment, including the electrochemical model, mass flow model and thermal model. In the mass flow model, the water retention property and oxygen transfer characteristics of the gas diffusion layer is modelled. The simulation indicates that the internal humidity of OC-PEMFC varies with stack temperature and operating conditions, which has a significant influence on stack efficiency and output performance. In order to maintain a good internal humidity state during operation, this model can be used to determine the optimal stack temperature and for the design of a proper control strategy.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Jehun Hahm ◽  
Hyoseok Kang ◽  
Jaeho Baek ◽  
Heejin Lee ◽  
Mignon Park

This paper proposes an integrated photovoltaic (PV) and proton exchange membrane fuel cell (PEMFC) system for continuous energy harvesting under various operating conditions for use with a brushless DC motor. The proposed scheme is based on the incremental conductance (IncCond) algorithm combined with the sliding mode technique. Under changing atmospheric conditions, the energy conversion efficiency of a PV array is very low, leading to significant power losses. Consequently, increasing efficiency by means of maximum power point tracking (MPPT) is particularly important. To manage such a hybrid system, control strategies need to be established to achieve the aim of the distributed system. Firstly, a Matlab/Simulink based model of the PV and PEMFC is developed and validated, as well as the incremental conductance sliding (ICS) MPPT technique; then, different MPPT algorithms are employed to control the PV array under nonuniform temperature and insolation conditions, to study these algorithms effectiveness under various operating conditions. Conventional techniques are easy to implement but produce oscillations at MPP. Compared to these techniques, the proposed technique is more efficient; it produces less oscillation at MPP in the steady state and provides more precise tracking.


2006 ◽  
Vol 4 (4) ◽  
pp. 468-473 ◽  
Author(s):  
Alessandra Perna

The purpose of this work is to investigate, by a thermodynamic analysis, the effects of the process variables on the performance of an autothermal reforming (ATR)-based fuel processor, operating on ethanol as fuel, integrated into an overall proton exchange membrane (PEM) fuel cell system. This analysis has been carried out finding the better operating conditions to maximize hydrogen yield and to minimize CO carbon monoxide production. In order to evaluate the overall efficiency of the system, PEM fuel cell operations have been analyzed by an available parametric model.


2008 ◽  
Vol 182 (2) ◽  
pp. 469-475 ◽  
Author(s):  
M. Marrony ◽  
R. Barrera ◽  
S. Quenet ◽  
S. Ginocchio ◽  
L. Montelatici ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document