ELECTRIC SUBMERSIBLE PUMP OPERATION MODE OPTIMIZATION TO INCREASE THE RUN-TO-FAILURE TIME

2021 ◽  
pp. 30-36
Author(s):  
A.R. Shabonas ◽  
◽  
Author(s):  
S.S. Ulianov ◽  
◽  
R.I. Sagyndykov ◽  
D.S. Davydov ◽  
S.A. Nosov ◽  
...  

Author(s):  
Robert Adams ◽  
Jinjiang Xiao ◽  
Michael Cross ◽  
Max Deffenbaugh

Switched reluctance motors may be advantageous when used as the primary motor for an electric submersible pump system.  They are less susceptible to jamming failures due to their high starting torque and ability to reverse direction.  Driving these motors requires well-timed pulse waveforms and precise control of the motor based on its rotational position.  In general, voltage-based sensing and control systems at the surface see highly unpredictable waveforms with excessive ringing behaviour due to the impedance characteristics of the long cabling between the surface controller and the downhole motor system.  In this work, a system is detailed which monitors the current waveforms on the motor coil excitation conductors at the surface as a source of motor performance feedback and control.  State-space modelling of the system shows stable current waveforms at the surface controller for both short and long interconnect cable systems.  A laboratory demonstration of the surface controller, interconnect cabling, and motor system is shows excellent agreement with the current and voltage waveforms predicted by the state-space system model.


2020 ◽  
Vol 1 (4) ◽  
pp. 16-24
Author(s):  
A.I. Grishin ◽  

The paper investigates the effect on the linear peristaltic pump operation of the properties of the material of its elastic tube, the algorithm of actuation of the release elements, as well as the presence of irregularities in the inlet and outlet sections of the pump in the form of alternating confusers and sudden expansions. To study the influence of these factors, a series of numerical experiments was carried out using the universal software STAR-CCM +, where the pump operation was simulated by a joint calculation of the fluid flow and elastic deformations of its tube. As a result of numerical experiments for a number of values of Poisson's ratio, it was found that the material of the pump tube must be selected with the lowest possible Poisson's ratio in order to obtain the highest efficiency. The study of possible algorithms for the actuation of the release elements of the pump showed that in order to obtain the maximum efficiency, the pump operation mode should be select-ed in accordance with the drive design. The drive, where energy is expended only on the movement of the release elements, requires the mode with the first release elements to hold the tube in a com-pressed state longer, which provides a higher feed value. For the drive, where energy is spent on maintaining the tube in a compressed state, the preferred mode is the one with the delay in the re-turn of the release element to its original state is minimal. As a result of studying the influence of sections with irregularities, it was found that the use of the height and pitch of irregularities, when the ratio of the resistances of these sections in the forward and reverse flow is optimal, leads to a decrease in the flow and pressure of pump.


Sign in / Sign up

Export Citation Format

Share Document