scholarly journals Renal Replacement Therapy in Critically Ill: Current Trend and New Direction

2015 ◽  
Vol 3 (1) ◽  
pp. 17-21
Author(s):  
Sarwar Iqbal ◽  
Mohammad Omar Faruq

Critically ill patients often present with renal dysfunction. Acute kidney injury (AKI) is common in intensive care unit (ICU) patients and is often a component of multiple organ dysfunction syndrome (MODS). Renal replacement therapy (RRT) plays a significant role in management of acute and chronic renal failure in ICU. During the last decade RRT has made remarkable progress in management of renal dysfunction of critically ill. The Acute Dialysis Quality Initiative conceived in 2002 proposed RIFLE classification for AKI (risk, injury, failure, loss, end-stage kidney disease) using serum creatinine and urine output in critically ill patients. More recently, the Acute Kidney Injury Network (AKIN) has been introduced for staging AKI. Studies have shown that mortality increases proportionately with increasing severity of AKI. In patients with severe AKI requiring RRT mortality is approximately 50% to 70% according to one study and even a small changes in serum creatinine are associated with increased mortality. The most common causes of AKI in ICU are sepsis, hypovolemia, low cardiac output and drugs. The various techniques of RRT used in ICU include intermittent hemodialysis (IHD), continuous RRT (CRRT), sustained low efficiency dialysis (SLED) and peritoneal dialysis (PD). It is preferable to use RRT at either RIFLE injury type or at AKIN stage II in critically ill patients. IHD is commonly used in hemodynamically stable ICU patients. Because of high dialysate (500ml/min) IHD may cause hypotension in some patients. Solute removal may be episodic and often result in inferior uraemic control and acid base control. CRRT is usually initiated with a blood flow of 100 to 200 ml/min. and thus hemodynamic instability associated with IHD is avoided. Major advantages of CRRT include continuous control of fluid status, hemodynamic stability and control of acid base status. It is expensive and there is high risk of bleeding because of use of high dose of IV heparin. SLED has been found to be safe and effective in critically ill patients with hemodynamic instability. It uses the same dialysis machine of IHD and combines the effectiveness of CRRT in unstable patients and easy operability of IHD. It is also cost effective. PD is initiated in ICU for AKI patients when bedside IHD is not available. It is good for hemodynamically unstable patients when IHD or CRRT is difficult. In patients on mechanical ventilator, PD interferes with function of diaphragm causing decrease in lung compliance. Early identification of AKI with bio markers is an important step in improving outcomes of AKI. These bio markers help early detection of AKI before the onset of rise in serum creatinine. Serum cystatin C is one of the sensitive bio markers of small changes in Glomerular filtration rate (GFR) and has been found to be useful. AKI in the ICU most commonly results from multiple insults. Therefore appropriate and early identification of patients at risk of AKI provides an opportunity to prevent subsequent renal insults. This strategy will influence overall ICU morbidity and mortality.Bangladesh Crit Care J March 2015; 3 (1): 17-21

2021 ◽  
pp. 1-7
Author(s):  
Pattharawin Pattharanitima ◽  
Akhil Vaid ◽  
Suraj K. Jaladanki ◽  
Ishan Paranjpe ◽  
Ross O’Hagan ◽  
...  

Background/Aims: Acute kidney injury (AKI) in critically ill patients is common, and continuous renal replacement therapy (CRRT) is a preferred mode of renal replacement therapy (RRT) in hemodynamically unstable patients. Prediction of clinical outcomes in patients on CRRT is challenging. We utilized several approaches to predict RRT-free survival (RRTFS) in critically ill patients with AKI requiring CRRT. Methods: We used the Medical Information Mart for Intensive Care (MIMIC-III) database to identify patients ≥18 years old with AKI on CRRT, after excluding patients who had ESRD on chronic dialysis, and kidney transplantation. We defined RRTFS as patients who were discharged alive and did not require RRT ≥7 days prior to hospital discharge. We utilized all available biomedical data up to CRRT initiation. We evaluated 7 approaches, including logistic regression (LR), random forest (RF), support vector machine (SVM), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), multilayer perceptron (MLP), and MLP with long short-term memory (MLP + LSTM). We evaluated model performance by using area under the receiver operating characteristic (AUROC) curves. Results: Out of 684 patients with AKI on CRRT, 205 (30%) patients had RRTFS. The median age of patients was 63 years and their median Simplified Acute Physiology Score (SAPS) II was 67 (interquartile range 52–84). The MLP + LSTM showed the highest AUROC (95% CI) of 0.70 (0.67–0.73), followed by MLP 0.59 (0.54–0.64), LR 0.57 (0.52–0.62), SVM 0.51 (0.46–0.56), AdaBoost 0.51 (0.46–0.55), RF 0.44 (0.39–0.48), and XGBoost 0.43 (CI 0.38–0.47). Conclusions: A MLP + LSTM model outperformed other approaches for predicting RRTFS. Performance could be further improved by incorporating other data types.


2009 ◽  
Vol 24 (1) ◽  
pp. 129-140 ◽  
Author(s):  
Sean M. Bagshaw ◽  
Shigehiko Uchino ◽  
Rinaldo Bellomo ◽  
Hiroshi Morimatsu ◽  
Stanislao Morgera ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Abdulmuttalip Simsek ◽  
Volkan Tugcu ◽  
Ali Ihsan Tasci

Acute kidney injury (AKI) is a common and strong problem in the diagnosis of which based on measurement of BUN and serum creatinine. These traditional methods are not sensitive and specific for the diagnosis of AKI. AKI is associated with increased morbidity and mortality in critically ill patients and a quick detection is impossible with BUN and serum creatinine. A number of serum and urinary proteins have been identified that may messenger AKI prior to a rise in BUN and serum creatinine. New biomarkers of AKI, including NGAL, KIM-1, cystatin-C, IL-18, and L-FABP, are more favourable tests than creatinine which have been identified and studied in several experimental and clinical training. This paper will discuss some of these new biomarkers and their potential as useful signs of AKI. We searched the literature using PubMed and MEDLINE with acute kidney injury, urine, and serum new biomarkers and the articles were selected only from publication types in English.


Pharmacy ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 33
Author(s):  
Paula Brown ◽  
Marisa Battistella

The use of sustained low-efficiency dialysis (SLED) as a renal replacement modality has increased in critically ill patients with both acute kidney injury (AKI) and hemodynamic instability. Unfortunately, there is a paucity of data regarding the appropriate dosing of medications for patients undergoing SLED. Dose adjustment in SLED often requires interpretation of pharmacodynamics and pharmacokinetic factors and extrapolation based on dosing recommendations from other modes of renal replacement therapy (RRT). This review summarizes published trials of antimicrobial dose adjustment in SLED and discusses pharmacokinetic considerations specific to medication dosing in SLED. Preliminary recommendation is provided on selection of appropriate dosing for medications where published literature is unavailable.


Sign in / Sign up

Export Citation Format

Share Document