scholarly journals Preparation and Characterization of White Carbon Black From Rice Husk

2017 ◽  
Vol 9 (2) ◽  
pp. 1-7 ◽  
Author(s):  
MAA Khan ◽  
MS Saha ◽  
S Sultana ◽  
AN Ahmed

Generally white carbon black in a form of silica is used instead of carbon black as reinforcing filler for rubber compounding. In the present research white carbon black was prepared from rice husks in cost effective method with direct incineration of acid leaching rice husk. The physico-chemical properties of rice husk and the product of white carbon black obtained from rice husk were investigated by Thermogravimetry, Particle size analyzer, Scanning electron microscope; Fourier transformed infrared radiation (FTIR), X-ray fluorescence and X-ray difractometry analyses. It was found that the decomposition of organic constituents of rice husk was revealed by Thermo gravimetric and carbon, hydrogen, nitrogen, sulpher (CHNS) analyses. The FTIR spectrum showed presence of Si-O-Si band with a strong peak at 1085 cm-1. The analysis of particle size and scanning electron microscope demonstrated that the produced white carbon black represent different size of 112 ?m to 0.01 ?m with very small nano-particle and amorphous structure. The amorphous structure of product was also confirmed by XRD pattern. The high pure product as 99.9% was confirmed by XRF analysis. These types of product have potential application as filler in rubber compounding.J. Environ. Sci. & Natural Resources, 9(2): 1-7 2016

2020 ◽  
Vol 1010 ◽  
pp. 501-507
Author(s):  
Farah Diana Mohd Daud ◽  
Nur Aishah M. Azmy ◽  
Mudrikah Sofia Mahmud ◽  
Norshahida Sariffudin ◽  
Hafizah Hanim Mohd Zaki

Silica in nanoscale has various superior properties which leads to a wide range of applications. Most researches used and metal alkoxides as the sources but very few researches attempted at preparing nanosilica powder from the agricultural waste which environmental friendly and inexpensive. This research is presented as the studies of optimization of parameters involved during preparation, aimed to improve the purity of silica produced. In this work, rice husk ash (RHA) precursor was subjected to precipitation method in order to produce nanosilica powder. Acid leaching and thermal treatment were done as a pre-synthesis process. The process parameters that have been studied were the refluxed NaOH concentration, heating time, and temperature, in which the properties were then evaluated during characterization process. The results from X-Ray Flourescence (XRF) confirmed that it is possible to extract 100% purity of silica from RHA treated by the combination of thermal treatment, acid leaching, refluxed with 2.5 M of NaOH and heated at 50°C for 48 hours. X-Ray Diffraction (XRD) illustrated that the produced silica is in amorphous state. Meanwhile, the mean particle size of the spherical shape of silica obtained ranging from 44.7 nm to 1.23 μm. Therefore, the best mean particle size obtained was by using the sample refluxed with 2.5 M NaOH and heated at 50°C for 48 hours, which were confirmed by Scanning Electron Microscope (SEM) and Field Emission Scanning Electron Microscope (FESEM). These findings on the optimum parameters indicate the successful production of highest purity of nanosilica powder with nanoscaled particle size.


2020 ◽  
Vol 16 (2) ◽  
pp. 12
Author(s):  
Solihudin Solihudin ◽  
Haryono Haryono ◽  
Atiek Rostika Noviyanti ◽  
Muhammad Rizky Ridwansyah

<p>Komposit forsterit-karbon merupakan salah satu material modifikasi dari forsterit yang berpotensi memiliki sifat isolator panas baik. Karbon dalam komposit dapat mengisi cacat titik pada kristal forsterit. Arang sekam padi (residu gasifikasi) mengandung SiO2 amorf dan karbon yang tinggi. Penelitian ini bertujuan menentukan pengaruh suhu kalsinasi dalam medium gas inert (dengan pengaliran gas argon) terhadap karakteristik komposit forsterit-karbon dari arang sekam padi dan magnesium karbonat. Metode penelitian meliputi preparasi arang sekam padi hasil gasifikasi, dan sintesis forsterit-karbon. Proses sintesis komposit forsterit karbon dilakukan dengan cara mencampurkan arang sekam padi dengan kalium karbonat pada rasio mol magmesium terhadap silikon sebesar 2 : 1 kemudian dikalsinasi dengan suhu divariasikan (700, 800, 900, dan 1000 oC). Selanjutnya sampel hasil sintesis dikarakterisasi dengan Fourier-transform infrared (FTIR), X-ray diffraction (XRD), dan scanning electron microscope-energy dispersive spectroscopy (SEM-EDS). Hasil karakterisasi dengan FTIR dan XRD diperoleh kesimpulan bahwa forsterit mulai terbentuk pada suhu kalisiasi 800 oC dan sempurna pada suhu 1000 oC, karenanya komposit yang terbentuk pada 1000 oC dimungkinkan sebagai forsterit-karbon, di mana unsur-unsur yang terkandung ditunjukkan oleh SEM-EDS.</p><p> </p><p><strong>The Effect of Calcination Temperature on the Characteristics of Forsterite-Carbon Composites Synthesized in Argon Gas Medium</strong>. Forsterite-carbon composite is one of the material modifications of forsterite, which potentially has a good heat insulation property. Carbon in composites can fill point defects in forsterite crystals. Rice husk charcoal, as gasification residues, contains high amorphous SiO2 and carbon. This study aims to determine the effect of temperature on the calcination of a mixture of rice husk charcoal and magnesium carbonate under an inert gas (argon gas) on the characteristics of the forsterite-carbon composite produced. The experimental research performed includes the preparation of gasified rice husk charcoal and the synthesis of the carbon-forsterite composite. The synthesis process of the carbon-forsterite composites was carried out by mixing rice husk charcoal with potassium carbonate at a mole ratio of magnesium to silicon of 2 : 1. The mixture was then calcined with varying temperatures (700, 800, 900, and 1000 °C). Furthermore, the synthesized sample was characterized by Fourier-transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscope-energy dispersive spectroscopy (SEM-EDS). The FTIR and XRD analysis show that the forsterites began to form at a calcination temperature of 800 °C and perfectly formed at a temperature of 1000 °C; therefore, the composite formed at 1000 °C is possible as forsterite-carbon, in which the contained elements were indicated by SEM-EDS.</p>


2013 ◽  
Vol 860-863 ◽  
pp. 956-959
Author(s):  
Xing Hua Liang ◽  
Lin Shi ◽  
Yu Si Liu ◽  
Tian Jiao Liu ◽  
Chao Chao Ye ◽  
...  

The High Potential Material Lini0.5Mn1.5O4 was Synthesized via Solid-State Reaction.The Surface Morphology and Particle Size of the Sample were Observed by Scanning Electron Microscope(SEM).The Crystal Structure of the Sample was Collected and Analyzed through X-Ray Diffractometry(XRD).The Sample was Charaterized by Charge-Discharge Tests.Results Indicated that the Cycling Retention Rate was about 80%,after being Charge-Diacharged at a Rate of 0.1C in a Voltage of 3.45-4.77V for 10 Times.Compared with Limn2O4,LiNi0.5Mn1.5O4 has good cycle performance.Both of LiNi0.5Mn1.5O4 structure were space group of Fd3m.


2011 ◽  
Vol 194-196 ◽  
pp. 2164-2168 ◽  
Author(s):  
Bai Kun Wang ◽  
Hao Ding ◽  
Yun Xing Zheng ◽  
Ning Liang

The amorphous silica was prepared from the alkali wastewater rich in Na2O•nSiO2 produced in manufacturing process of zirconium oxychloride (ZrOCl2). The composition and microstructure of amorphous silica were studied by X-ray diffraction, X-ray fluorescence and scanning electron microscope, respectively. The results showed that the amorphous silica was mainly composed of uncrystallized substance, and the silica content was 96.4%. Its whiteness was 97.5% and the particle size was between 100nm and 200nm without agglomeration. The specific surface area of the amorphous silica was 531.9 m2/g, and its pore volume and diameter were 0.945 cm3/g and 4.94 nm, respectively.


2015 ◽  
Vol 816 ◽  
pp. 676-681 ◽  
Author(s):  
Xiao Long Qu ◽  
Zheng Fu Zhang ◽  
Jin Cheng ◽  
Xiao Yan Wang

The spherical Ni0.5Co0.2Mn0.3(OH)2 powders were prepared by ammonia-hydroxide co-precipitation method. The influence of different synthesizing factors on the precursors characteristic were investigated. The product prepared with optimized condition has tap density of D≥1.7g·cm-3, and middle particle size D50≈3.6μm. The X-ray diffraction (XRD) results showed that the precursor can be indexed by a hexagonal β-Ni (OH)2 structure. The scanning electron microscope (SEM) results showed that the powders had quasi-spherical pattern and homogeneous particle size distribution.


2014 ◽  
Vol 881-883 ◽  
pp. 1568-1571
Author(s):  
Zhi Qiang Ning ◽  
Ling Ling Zhang

The phase composition and particle size of the boron mud is investigated by X-ray diffractometry (XRD), scanning electron microscope (SEM) and laser particle size analyzer. The mainly phase composition of the boron mud are magnesite (MgCO3) and forsterite (Mg2SiO4). The mainly phase composition of the calcined boron mud are forsterite (Mg2SiO4) and a small amount magnesia (MgO). the sizes of the boron mud are about 2~6μm and a few of them are bigger and less than 10μm and the particle size of less than 10μm is about 60%.


2020 ◽  
Vol 16 (2) ◽  
pp. 163
Author(s):  
Solihudin Solihudin ◽  
Haryono Haryono ◽  
Atiek Rostika Noviyanti ◽  
Muhammad Rizky Ridwansyah

<p>Komposit forsterit-karbon merupakan salah satu material modifikasi dari forsterit yang berpotensi memiliki sifat isolator panas baik. Karbon dalam komposit dapat mengisi cacat titik pada kristal forsterit. Arang sekam padi (residu gasifikasi) mengandung SiO2 amorf dan karbon yang tinggi. Penelitian ini bertujuan menentukan pengaruh suhu kalsinasi dalam medium gas inert (dengan pengaliran gas argon) terhadap karakteristik komposit forsterit-karbon dari arang sekam padi dan magnesium karbonat. Metode penelitian meliputi preparasi arang sekam padi hasil gasifikasi, dan sintesis forsterit-karbon. Proses sintesis komposit forsterit karbon dilakukan dengan cara mencampurkan arang sekam padi dengan kalium karbonat pada rasio mol magmesium terhadap silikon sebesar 2 : 1 kemudian dikalsinasi dengan suhu divariasikan (700, 800, 900, dan 1000 oC). Selanjutnya sampel hasil sintesis dikarakterisasi dengan Fourier-transform infrared (FTIR), X-ray diffraction (XRD), dan scanning electron microscope-energy dispersive spectroscopy (SEM-EDS). Hasil karakterisasi dengan FTIR dan XRD diperoleh kesimpulan bahwa forsterit mulai terbentuk pada suhu kalisiasi 800 oC dan sempurna pada suhu 1000 oC, karenanya komposit yang terbentuk pada 1000 oC dimungkinkan sebagai forsterit-karbon, di mana unsur-unsur yang terkandung ditunjukkan oleh SEM-EDS.</p><p> </p><p><strong>The Effect of Calcination Temperature on the Characteristics of Forsterite-Carbon Composites Synthesized in Argon Gas Medium</strong>. Forsterite-carbon composite is one of the material modifications of forsterite, which potentially has a good heat insulation property. Carbon in composites can fill point defects in forsterite crystals. Rice husk charcoal, as gasification residues, contains high amorphous SiO2 and carbon. This study aims to determine the effect of temperature on the calcination of a mixture of rice husk charcoal and magnesium carbonate under an inert gas (argon gas) on the characteristics of the forsterite-carbon composite produced. The experimental research performed includes the preparation of gasified rice husk charcoal and the synthesis of the carbon-forsterite composite. The synthesis process of the carbon-forsterite composites was carried out by mixing rice husk charcoal with potassium carbonate at a mole ratio of magnesium to silicon of 2 : 1. The mixture was then calcined with varying temperatures (700, 800, 900, and 1000 °C). Furthermore, the synthesized sample was characterized by Fourier-transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscope-energy dispersive spectroscopy (SEM-EDS). The FTIR and XRD analysis show that the forsterites began to form at a calcination temperature of 800 °C and perfectly formed at a temperature of 1000 °C; therefore, the composite formed at 1000 °C is possible as forsterite-carbon, in which the contained elements were indicated by SEM-EDS.</p>


Respuestas ◽  
2016 ◽  
Vol 15 (2) ◽  
pp. 5-9
Author(s):  
Armando Sarmiento Santos

Se estudia la influencia de los procesos utilizados durante las etapas de preparación de muestras por pulvimetalurgia, en algunas de las características de aleaciones inoxidables de Fe-Cr. Para ello se preparan muestras Fe-Cr con concentraciones de cromo entre 13,9 y 28,4 % en peso, se correlaciona el comportamiento de la variación de densidad de las muestras con su contenido de cromo y con los parámetros del proceso. Las muestras se someten a análisis elemental con la microsonda de rayos X acoplada al microscopio electrónico de barrido para corroborar los correspondientes contenidos de cromo. También fue observada la microestructura para las muestras con diferentes concentraciones de cromo. A partir de los análisis realizados se encontró una mayor densificación en las muestras con mayores contenidos de cromo, las cuales corresponden a una distribución de tamaño de partícula más ancha. Del estudio de la microestructura de las muestras, en función del contenido de cromo, se observa un mayor crecimiento de grano y menor porosidad en muestras con menor contenido de cromo.Palabras clave: pulvimetalurgia, aleaciones inoxidables, cromoAbstractThe influence of the processes used during the stages of sample preparation by powder metallurgy, in some of the characteristics of Fe-Cr stainless alloys, are studied. For this will prepared Fe-Cr samples with chromium concentrations between 13.9 and 28.4% by weight. The behavior of the density variation of samples with chromium content and process parameters were correlated. The samples were subjected to elemental analysis with X-ray microprobe coupled to a scanning electron microscope to confirm the relevant contents of chromium. Microstructure was also observed for samples with different chromium concentrations. From the analysis, we found a higher density in samples with higher chromium contents, which correspond to a wider particle size distribution. The study of samples microstructure, as a function of chromium content, reveals a higher grain growth and lower porosity in samples with lower chromium content. Keywords: powder metallurgy, stainless alloys, chromium


2013 ◽  
Vol 634-638 ◽  
pp. 2388-2391 ◽  
Author(s):  
Hong Juan Duan ◽  
Hong Xi Zhu ◽  
Cheng Ji Deng ◽  
Wen Jie Yuan ◽  
Ping Liang

In this paper, the synthesis of MgAl2O4-SiAlON composite powders by forsterite, alumina and carbon black was studied. The samples were calcined under nitrogen atmosphere at 1500 °C, 1600 °C, 1650 °C for 3 hrs respectively. The phase compositions and microstructure of the synthesized powders were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The result shows that an optimal alumina/forsterite content was a molar ratio of 2.0:1.0, the products consisted mainly of MgAl2O4 and Si3Al3O3N5 at 1500 °C, MgAl2O4 and Mg1.25Si1.25Al2.5O3N3 at 1600 °C and 1650 °C. The temperature can improve the formation of the octahedral spinel and flakiness Mg1.25Si1.25Al2.5O3N3.


2016 ◽  
Vol 1 (1) ◽  
pp. 47 ◽  
Author(s):  
Andi Muhammad Anshar ◽  
Paulina Taba ◽  
Indah Raya

The purpose of this study was to investigate the adsorption ability of activated carbon from rice husk in adsorbing phenol. Activated carbon used was in this studies burning risk husk at 300 and 400<sup>o</sup>C and then activated by 10% of ZnCl<sub>2</sub>. The from activated carbon was characterized using an Infrared Spectrometer, an X-ray diffraction, an Scanning Electron Microscope, and a gas sorption analyzer. The best activated carbon for adsorbing phenol was the activated carbon that prodused from the burning of rice husk at a temperature 400<sup>o</sup>C and activated with 10% of ZnCl<sub>2</sub> for 24 hours. Adsorption capacity of the best activated carbon was 3.9370 mg/g adsorbent with Gibbs free energy of -25.493 kJ/mol.


Sign in / Sign up

Export Citation Format

Share Document