scholarly journals NEW APPROACH OF CLASSIFICATION OF ROLLING ELEMENT BEARING FAULT USING ARTIFICIAL NEURAL NETWORK

1970 ◽  
Vol 40 (2) ◽  
pp. 119-130 ◽  
Author(s):  
V. Hariharan ◽  
PSS. Srinivasan

The paper presents a new approach to the classification of rolling element bearing faults by implementing Artificial Neural Network. Diagnostics of rolling element bearing faults actually represents the problem of pattern classification and recognition, where the key step is feature extraction from the vibration signal. Characterization of each recorded vibration signal is performed by a combination of signal's time-varying statistical parameters and characteristic rolling element bearing fault frequency components obtained through the frequency spectrum analysis method. The experimental data is collected for four bearings at three different speeds. The sensor is located at three different positions for each bearing. Both time domain and frequency domain signals were measured. Thus the data was three time spectrums and three frequency spectrums for each speed for a bearing. The entire data set comprised of 72 (6 x 3 x 4) data. The time domain signal was comprised of 8192 samples and extracting these features from a huge data set was difficult. To overcome this difficulty the 8192 samples were split into 32 bins each containing 256 samples. Two Network RBFN and PNN are used to classify the bearing defects. The entire process of splitting and evaluating the seven features was coded in MATLAB.  From these seven features the most suitable features are for explaining the intensity of the defect is discussed.Key Words: Feature Extraction; Fault Frequencies; Roller Bearing; Bearing fault; Crest Factor; Variant;Radial Basis Function Network (RBFN); Probabilistic Neural Network (PNN)DOI: 10.3329/jme.v40i2.5353Journal of Mechanical Engineering, Vol. ME 40, No. 2, December 2009 119-130

2011 ◽  
Vol 291-294 ◽  
pp. 1469-1473
Author(s):  
Wei Ke ◽  
Yong Xiang Zhang ◽  
Lin Li

Vibration signal of rolling-element bearing is random cyclostationarity when a fault develops, the proper analysis of which can be used for condition monitor. Cyclic spectrum is a common cyclostationary analysis method and has a great many algorithms which have distinct efficiency in different application circumstance, two common algorithms (SSCA and FAM) are compared in the paper. The FAM is recommended to be used in diagnosing rolling-element bearing fault via calculation of simulation signal in different signal to noise ratio. The cyclic spectrum of practice signal of rolling-element bearing with inner-race point defect is analyzed and a new characteristic extraction method is put forward. The preferable result is acquired verify the correctness of the analysis and indicate that the cyclic spectrum is a robust method in diagnosing rolling-element bearing fault.


Rolling element bearing health condition is monitored by analysing its vibration signature. Raw vibration signal picked up through suitably placed accelerometers is difficult to analyse hence many signal processing techniques have been proposed and developed by researchers to process the data for suitably extracting an effective signal feature set. Various machine learning techniques have been used for interpretation and accurate fault diagnosis using this extracted feature set. In this study “Empirical mode decomposition” is used for pre-processing the raw vibration data. Six “Statistical features” are extracted from the best Intrinsic mode function obtained through EMD and “Ensemble machine learning classifiers” are used for bearing fault diagnosis. A stacked ensemble of five classifiers is proposed for accurate fault diagnosis and results are compared with conventional ensemble classifiers to prove its effectiveness


2016 ◽  
Vol 2016 ◽  
pp. 1-20 ◽  
Author(s):  
Xingxing Jiang ◽  
Shunming Li ◽  
Chun Cheng

Vibration signals of the defect rolling element bearings are usually immersed in strong background noise, which make it difficult to detect the incipient bearing defect. In our paper, the adaptive detection of the multiresonance bands in vibration signal is firstly considered based on variational mode decomposition (VMD). As a consequence, the novel method for enhancing rolling element bearing fault diagnosis is proposed. Specifically, the method is conducted by the following three steps. First, the VMD is introduced to decompose the raw vibration signal. Second, the one or more modes with the information of fault-related impulses are selected through the kurtosis index. Third, Multiresolution Teager Energy Operator (MTEO) is employed to extract the fault-related impulses hidden in the vibration signal and avoid the negative value phenomenon of Teager Energy Operator (TEO). Meanwhile, the physical meaning of MTEO is also discovered in this paper. In addition, an idea of combining the multiresonance bands is constructed to further enhance the fault-related impulses. The simulation studies and experimental verifications confirm that the proposed method is effective for identifying the multiresonance bands and enhancing rolling element bearing fault diagnosis by comparing with Hilbert transform, EMD-based demodulation, and fast Kurtogram analysis.


2011 ◽  
Vol 199-200 ◽  
pp. 931-935 ◽  
Author(s):  
Ning Li ◽  
Rui Zhou

Wavelet transform has been widely used for the vibration signal based rolling element bearing fault detection. However, the problem of aliasing inhering in discrete wavelet transform restricts its further application in this field. To overcome this deficiency, a novel fault detection method for roll element bearing using redundant second generation wavelet packet transform (RSGWPT) is proposed. Because of the absence of the downsampling and upsampling operations in the redundant wavelet transform, the aliasing in each subband signal is alleviated. Consequently, the signal in each subband can be characterized by the extracted features more effectively. The proposed method is applied to analyze the vibration signal measured from a faulty bearing. Testing results confirm that the proposed method is effective in extracting weak fault feature from a complex background.


Author(s):  
Leilei Ma ◽  
Hong Jiang ◽  
Tongwei Ma ◽  
Xiangfeng Zhang ◽  
Lei Xia ◽  
...  

This paper realizes early bearing fault warning through bearing fault time series prediction, and proposes a bearing fault time series prediction model based on optimized maximum correlation kurtosis deconvolution (MCKD) and long short-term memory (LSTM) recurrent neural network to ensure bearings operation reliability. The model is based on lifecycle vibration signal of the bearing, to begin, the cuckoo search (CS) is utilized to optimize the parameter filter length L and deconvolution period T of MCKD, taking into account the influence and periodicity of the bearing time series, the fault impact component of the optimized MCKD deconvolution time series is improved. Then select the LSTM learning rate α depending on deconvolution time series. Finally, the dataset obtained through various preprocessing approaches are used to train and predict the LSTM model. The average prediction accuracy of the optimized MCKD-LSTM model is 26 percent higher than that of the original time series, proving the efficiency of this method, and the prediction results track the real fault data well, according to the XI'AN JIAOTONG University XJTU-SY bearing dataset.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yanli Yang ◽  
Peiying Fu

A method based on wavelet and deep neural network for rolling-element bearing fault data automatic clustering is proposed. The method can achieve intelligent signal classification without human knowledge. The time-domain vibration signals are decomposed by wavelet packet transform (WPT) to obtain eigenvectors that characterize fault types. By using the eigenvectors, a dataset in which samples are labeled randomly is configured. The dataset is roughly classified by the distance-based clustering method. A fine classification process based on deep neural network is followed to achieve accurate classification. The entire process is automatically completed, which can effectively overcome the shortcomings such as low work efficiency, high implementation cost, and large classification error caused by individual participation. The proposed method is tested with the bearing data provided by the Case Western Reserve University (CWRU) Bearing Data Center. The testing results show that the proposed method has good performance in automatic clustering of rolling-element bearings fault data.


Sign in / Sign up

Export Citation Format

Share Document