scholarly journals Effect of Microstructure and Notches on the Fracture Toughness of Medium Carbon Steel

1970 ◽  
Vol 3 (1) ◽  
pp. 15-22 ◽  
Author(s):  
SK Nath ◽  
Uttam Kr Das

Fracture toughness (K1C) of medium carbon steel (0.5% C) has been determined by round notched tensile specimen. Two notch diameters (5.6mm and 4.2mm) and three notch angles (α) namely 45°, 60° and 75° have been used to observe the effect of notch diameters and notch angle on fracture toughness of the steel. By heat treatment the microstructure of the steel is also varied and its effect on the fracture toughness is also observed. It has been found that fine grained structure improves fracture toughness. Lower notch diameter and higher notch angle show higher value of K1C. Keywords: Fracture toughness, microstructure, notch, heat treatmentDOI: 10.3329/jname.v3i1.925 Journal of Naval Architecture and Marine Engineering 3(2006) 15-22

Alloy Digest ◽  
1972 ◽  
Vol 21 (3) ◽  

Abstract AISI 1025 is a low-to-medium-carbon steel used in the hot-worked, cold-worked, normalized or water-quenched-and-tempered condition for general-purpose construction and engineering. It is also used for case-hardened components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-47. Producer or source: Carbon and alloy steel mills.


Alloy Digest ◽  
1979 ◽  
Vol 28 (4) ◽  

Abstract SAE 1037 is a carbon steel that provides medium strength and medium toughness at low cost. It is used in the hot-rolled, normalized, oil-quenched-and-tempered and water-quenched-and-tempered conditions. This medium-carbon steel is used for construction and for general-purpose engineering. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-76. Producer or source: Carbon steel mills.


Alloy Digest ◽  
1976 ◽  
Vol 25 (6) ◽  

Abstract SAE 1026 is a low-to-medium-carbon steel used in the annealed, hot-worked, normalized, cold-worked or water-quenched-and-tempered condition for a variety of engineering and construction applications. It combines good workability (hot or cold), good machinability and good weldability. It has relatively high manganese (0.60-0.90%); this provides increased hardenability which is reflected in all uses and gives somewhat increased hardness and strength in the core of carburized parts and in uncarburized applications. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-60. Producer or source: Carbon steel mills.


Alloy Digest ◽  
1988 ◽  
Vol 37 (9) ◽  

Abstract AISI 4140 is a through-hardening chromium-molybdenum medium carbon steel. It is not subject to temper embrittlement. It is recommended for heavy duty service. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, machining, and joining. Filing Code: SA-18. Producer or source: Alloy steel mills and foundries. Originally published May 1954, revised September 1988.


Alloy Digest ◽  
1988 ◽  
Vol 37 (11) ◽  

Abstract UNS G10260 is a low-to-medium-carbon steel used in the annealed, hot-worked, normalized, cold-worked or water-quenched-and-tempered condition for a variety of engineering and construction applications. It combines good workability (hot or cold), good machinability and good weldability. It has relatively high manganese (0.60-0.90%); this provides increased hardenability which is reflected in all uses and gives somewhat increased hardness and strength in the core of carburized parts and in uncarburized applications. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: CS-123. Producer or source: Carbon steel mills.


Alloy Digest ◽  
1988 ◽  
Vol 37 (4) ◽  

Abstract SAE 1040 is a medium-carbon steel used in the hot-rolled, normalized, oil quenched and tempered or water quenched and tempered condition for general purpose engineering and construction. It provides medium strength and toughness at low cost. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-120. Producer or source: Carbon steel mills.


Alloy Digest ◽  
1969 ◽  
Vol 18 (7) ◽  

Abstract UNILOY-14HV is a low-alloy, medium carbon steel recommended for high temperature applications for bolting and structural parts at temperatures up to 1000 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-241. Producer or source: Cyclops Corporation.


Alloy Digest ◽  
1954 ◽  
Vol 3 (9) ◽  

Abstract STANDARD HR-6 is a high chromium-nickel, medium carbon steel of high corrosion and heat resistance. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness and creep. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: SS-18. Producer or source: Standard Alloy Company Inc..


Alloy Digest ◽  
1957 ◽  
Vol 6 (7) ◽  

Abstract AISI 4150 is a through hardening chromium-molybdenum medium carbon steel not subject to temper embrittlement. It is recommended for heavy duty service. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: SA-59. Producer or source: Alloy steel mills and foundries.


2018 ◽  
Vol 18 (1) ◽  
pp. 125-135
Author(s):  
Sattar H A Alfatlawi

One of ways to improve properties of materials without changing the product shape toobtain the desired engineering applications is heating and cooling under effect of controlledsequence of heat treatment. The main aim of this study was to investigate the effect ofheating and cooling on the surface roughness, microstructure and some selected propertiessuch as the hardness and impact strength of Medium Carbon Steel which treated at differenttypes of heat treatment processes. Heat treatment achieved in this work was respectively,heating, quenching and tempering. The specimens were heated to 850°C and left for 45minutes inside the furnace as a holding time at that temperature, then quenching process wasperformed in four types of quenching media (still air, cold water (2°C), oil and polymersolution), respectively. Thereafter, the samples were tempered at 200°C, 400°C, and 600°Cwith one hour as a soaking time for each temperature, then were all cooled by still air. Whenthe heat treatment process was completed, the surface roughness, hardness, impact strengthand microstructure tests were performed. The results showed a change and clearimprovement of surface roughness, mechanical properties and microstructure afterquenching was achieved, as well as the change that took place due to the increasingtoughness and ductility by reducing of brittleness of samples.


Sign in / Sign up

Export Citation Format

Share Document