Continuity of generalized Riesz potentials for double phase functionals with variable exponents

2021 ◽  
Vol 56 (2) ◽  
pp. 329-341
Author(s):  
Takao Ohno ◽  
◽  
Tetsu Shimomura ◽  

In this note, we discuss the continuity of generalized Riesz potentials \( I_{\rho}f\) of functions in Morrey spaces \(L^{\Phi,\nu(\cdot)}(G)\) of double phase functionals with variable exponents.

2019 ◽  
Vol 63 (2) ◽  
pp. 287-303
Author(s):  
Takao Ohno ◽  
Tetsu Shimomura

AbstractOur aim in this paper is to establish a generalization of Sobolev’s inequality for Riesz potentials $I_{\unicode[STIX]{x1D6FC}(\,\cdot \,),\unicode[STIX]{x1D70F}}f$ of order $\unicode[STIX]{x1D6FC}(\,\cdot \,)$ with $f\in L^{\unicode[STIX]{x1D6F7},\unicode[STIX]{x1D705},\unicode[STIX]{x1D703}}(X)$ over bounded non-doubling metric measure spaces. As a corollary we obtain Sobolev’s inequality for double phase functionals with variable exponents.


Author(s):  
TAKAO OHNO ◽  
TETSU SHIMOMURA

Our aim in this paper is to establish a generalization of Sobolev’s inequality for Riesz potentials $J_{\unicode[STIX]{x1D6FC}(\cdot )}^{\unicode[STIX]{x1D70E}}f$ of functions $f$ in Musielak–Orlicz–Morrey spaces $L^{\unicode[STIX]{x1D6F7},\unicode[STIX]{x1D705}}(X)$ . As a corollary we obtain Sobolev’s inequality for double phase functionals with variable exponents.


2011 ◽  
Vol 56 (7-9) ◽  
pp. 671-695 ◽  
Author(s):  
Yoshihiro Mizuta ◽  
Eiichi Nakai ◽  
Takao Ohno ◽  
Tetsu Shimomura

2020 ◽  
Vol 197 ◽  
pp. 111827 ◽  
Author(s):  
Yoshihiro Mizuta ◽  
Eiichi Nakai ◽  
Takao Ohno ◽  
Tetsu Shimomura

2019 ◽  
pp. 1-34 ◽  
Author(s):  
YOSHIHIRO MIZUTA ◽  
TAKAO OHNO ◽  
TETSU SHIMOMURA

Our aim in this paper is to deal with integrability of maximal functions for Herz–Morrey spaces on the unit ball with variable exponent$p_{1}(\cdot )$approaching$1$and for double phase functionals$\unicode[STIX]{x1D6F7}_{d}(x,t)=t^{p_{1}(x)}+a(x)t^{p_{2}}$, where$a(x)^{1/p_{2}}$is nonnegative, bounded and Hölder continuous of order$\unicode[STIX]{x1D703}\in (0,1]$and$1/p_{2}=1-\unicode[STIX]{x1D703}/N>0$. We also establish Sobolev type inequality for Riesz potentials on the unit ball.


2020 ◽  
Vol 18 (1) ◽  
pp. 715-730
Author(s):  
Javanshir J. Hasanov ◽  
Rabil Ayazoglu ◽  
Simten Bayrakci

Abstract In this article, we consider the Laplace-Bessel differential operator {\Delta }_{{B}_{k,n}}=\mathop{\sum }\limits_{i=1}^{k}\left(\frac{{\partial }^{2}}{\partial {x}_{i}^{2}}+\frac{{\gamma }_{i}}{{x}_{i}}\frac{\partial }{\partial {x}_{i}}\right)+\mathop{\sum }\limits_{i=k+1}^{n}\frac{{\partial }^{2}}{\partial {x}_{i}^{2}},{\gamma }_{1}\gt 0,\ldots ,{\gamma }_{k}\gt 0. Furthermore, we define B-maximal commutators, commutators of B-singular integral operators and B-Riesz potentials associated with the Laplace-Bessel differential operator. Moreover, we also obtain the boundedness of the B-maximal commutator {M}_{b,\gamma } and the commutator {[}b,{A}_{\gamma }] of the B-singular integral operator and Hardy-Littlewood-Sobolev-type theorem for the commutator {[}b,{I}_{\alpha ,\gamma }] of the B-Riesz potential on B-Morrey spaces {L}_{p,\lambda ,\gamma } , when b\in {\text{BMO}}_{\gamma } .


2021 ◽  
Vol 15 (3) ◽  
Author(s):  
Helena F. Gonçalves

AbstractIn this paper we provide non-smooth atomic decompositions of 2-microlocal Besov-type and Triebel–Lizorkin-type spaces with variable exponents $$B^{\varvec{w}, \phi }_{p(\cdot ),q(\cdot )}({\mathbb {R}}^n)$$ B p ( · ) , q ( · ) w , ϕ ( R n ) and $$F^{\varvec{w}, \phi }_{p(\cdot ),q(\cdot )}({\mathbb {R}}^n)$$ F p ( · ) , q ( · ) w , ϕ ( R n ) . Of big importance in general, and an essential tool here, are the characterizations of the spaces via maximal functions and local means, that we also present. These spaces were recently introduced by Wu et al. and cover not only variable 2-microlocal Besov and Triebel–Lizorkin spaces $$B^{\varvec{w}}_{p(\cdot ),q(\cdot )}({\mathbb {R}}^n)$$ B p ( · ) , q ( · ) w ( R n ) and $$F^{\varvec{w}}_{p(\cdot ),q(\cdot )}({\mathbb {R}}^n)$$ F p ( · ) , q ( · ) w ( R n ) , but also the more classical smoothness Morrey spaces $$B^{s, \tau }_{p,q}({\mathbb {R}}^n)$$ B p , q s , τ ( R n ) and $$F^{s,\tau }_{p,q}({\mathbb {R}}^n)$$ F p , q s , τ ( R n ) . Afterwards, we state a pointwise multipliers assertion for this scale.


Sign in / Sign up

Export Citation Format

Share Document