Trudinger’s inequalities for Riesz potentials in Morrey spaces of double phase functionals on half spaces

2021 ◽  
pp. 1-12
Author(s):  
Yoshihiro Mizuta ◽  
Tetsu Shimomura
2019 ◽  
Vol 63 (2) ◽  
pp. 287-303
Author(s):  
Takao Ohno ◽  
Tetsu Shimomura

AbstractOur aim in this paper is to establish a generalization of Sobolev’s inequality for Riesz potentials $I_{\unicode[STIX]{x1D6FC}(\,\cdot \,),\unicode[STIX]{x1D70F}}f$ of order $\unicode[STIX]{x1D6FC}(\,\cdot \,)$ with $f\in L^{\unicode[STIX]{x1D6F7},\unicode[STIX]{x1D705},\unicode[STIX]{x1D703}}(X)$ over bounded non-doubling metric measure spaces. As a corollary we obtain Sobolev’s inequality for double phase functionals with variable exponents.


Author(s):  
TAKAO OHNO ◽  
TETSU SHIMOMURA

Our aim in this paper is to establish a generalization of Sobolev’s inequality for Riesz potentials $J_{\unicode[STIX]{x1D6FC}(\cdot )}^{\unicode[STIX]{x1D70E}}f$ of functions $f$ in Musielak–Orlicz–Morrey spaces $L^{\unicode[STIX]{x1D6F7},\unicode[STIX]{x1D705}}(X)$ . As a corollary we obtain Sobolev’s inequality for double phase functionals with variable exponents.


2021 ◽  
Vol 56 (2) ◽  
pp. 329-341
Author(s):  
Takao Ohno ◽  
◽  
Tetsu Shimomura ◽  

In this note, we discuss the continuity of generalized Riesz potentials \( I_{\rho}f\) of functions in Morrey spaces \(L^{\Phi,\nu(\cdot)}(G)\) of double phase functionals with variable exponents.


2019 ◽  
pp. 1-34 ◽  
Author(s):  
YOSHIHIRO MIZUTA ◽  
TAKAO OHNO ◽  
TETSU SHIMOMURA

Our aim in this paper is to deal with integrability of maximal functions for Herz–Morrey spaces on the unit ball with variable exponent$p_{1}(\cdot )$approaching$1$and for double phase functionals$\unicode[STIX]{x1D6F7}_{d}(x,t)=t^{p_{1}(x)}+a(x)t^{p_{2}}$, where$a(x)^{1/p_{2}}$is nonnegative, bounded and Hölder continuous of order$\unicode[STIX]{x1D703}\in (0,1]$and$1/p_{2}=1-\unicode[STIX]{x1D703}/N>0$. We also establish Sobolev type inequality for Riesz potentials on the unit ball.


2020 ◽  
Vol 18 (1) ◽  
pp. 715-730
Author(s):  
Javanshir J. Hasanov ◽  
Rabil Ayazoglu ◽  
Simten Bayrakci

Abstract In this article, we consider the Laplace-Bessel differential operator {\Delta }_{{B}_{k,n}}=\mathop{\sum }\limits_{i=1}^{k}\left(\frac{{\partial }^{2}}{\partial {x}_{i}^{2}}+\frac{{\gamma }_{i}}{{x}_{i}}\frac{\partial }{\partial {x}_{i}}\right)+\mathop{\sum }\limits_{i=k+1}^{n}\frac{{\partial }^{2}}{\partial {x}_{i}^{2}},{\gamma }_{1}\gt 0,\ldots ,{\gamma }_{k}\gt 0. Furthermore, we define B-maximal commutators, commutators of B-singular integral operators and B-Riesz potentials associated with the Laplace-Bessel differential operator. Moreover, we also obtain the boundedness of the B-maximal commutator {M}_{b,\gamma } and the commutator {[}b,{A}_{\gamma }] of the B-singular integral operator and Hardy-Littlewood-Sobolev-type theorem for the commutator {[}b,{I}_{\alpha ,\gamma }] of the B-Riesz potential on B-Morrey spaces {L}_{p,\lambda ,\gamma } , when b\in {\text{BMO}}_{\gamma } .


2011 ◽  
Vol 56 (7-9) ◽  
pp. 671-695 ◽  
Author(s):  
Yoshihiro Mizuta ◽  
Eiichi Nakai ◽  
Takao Ohno ◽  
Tetsu Shimomura

2020 ◽  
Vol 197 ◽  
pp. 111827 ◽  
Author(s):  
Yoshihiro Mizuta ◽  
Eiichi Nakai ◽  
Takao Ohno ◽  
Tetsu Shimomura

2018 ◽  
Vol 30 (3) ◽  
pp. 617-629 ◽  
Author(s):  
Yanping Chen ◽  
Yong Ding

AbstractLet {L=-\operatorname{div}(A\nabla)} be a second-order divergence form elliptic operator and let A be an accretive, {n\times n} matrix with bounded measurable complex coefficients in {{\mathbb{R}}^{n}}. Let {L^{-\frac{\alpha}{2}}} be the fractional integral associated to L for {0<\alpha<n}. For {b\in L_{\mathrm{loc}}({\mathbb{R}}^{n})} and {k\in{\mathbb{N}}}, the k-th order commutator of b and {L^{-\frac{\alpha}{2}}} is given by(L^{-\frac{\alpha}{2}})_{b,k}f(x)=L^{-\frac{\alpha}{2}}((b(x)-b)^{k}f)(x).In the paper, we mainly show that if {b\in\mathrm{BMO}({\mathbb{R}}^{n})}, {0<\lambda<n} and {0<\alpha<n-\lambda}, then {(L^{-\frac{\alpha}{2}})_{b,k}} is bounded from {L^{p,\lambda}} to {L^{q,\lambda}} for {p_{-}(L)<p<q<p_{+}(L)\frac{n-\lambda}{n}} and {\frac{1}{q}=\frac{1}{p}-\frac{\alpha}{n-\lambda}}, where {p_{-}(L)} and {p_{+}(L)} are the two critical exponents for the {L^{p}} uniform boundedness of the semigroup {\{e^{-tL}\}_{t>0}}. Also, we establish the boundedness of the commutator of the fractional integral with Lipschitz function on Morrey spaces. The results encompass what is known for the classical Riesz potentials and elliptic operators with Gaussian domination by the classical heat operator.


Sign in / Sign up

Export Citation Format

Share Document